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Preface: Notes to the Explorer

Yes, that’s you - you’re the explorer.
“Explorer?”
Yes, explorer. And these notes are for you.
We could have addressed you as “reader,” but this is not a traditional book. Indeed, this book

cannot be read in the traditional sense. For this book is really a guide. It is a map. It is a route of
trail markers along a path through part of the world of mathematics. This book provides you, our
explorer, our heroine or hero, with a unique opportunity to explore this path - to take a surprising,
exciting, and beautiful journey along a meandering path through a mathematical continent named
the number theory. And this is a vast continent, not just one fixed, singular locale.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by dozens of exercises that closely mimic illustrative examples. Rather, after a brief
introduction to the chapter, the majority of each chapter is made up of Investigations. These
investigations are interwoven with brief surveys, narratives, or introductions for context. But the
Investigations form the heart of this book, your journey. In the form of a Socratic dialogue, the
Investigations ask you to explore. They ask you to discover the number theory. This is not a
sightseeing tour, you will be the active one here. You will see mathematics the only way it can be
seen, with the eyes of the mind - your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling if
you are not forced to approach it in a mindless, stress-invoking, mechanical manner. In this journey
you will find the mathematical world to be quite different from the static barren landscape most
textbooks paint it to be. Mathematics is in the midst of a golden age - more mathematics is
discovered each day than in any time in its long history. Each year there are 50,000 mathematical
papers and books that are reviewed for Mathematical Reviews! Fermat’s Last Theorem, which is
considered in detail in Discovering that Art of Mathematics - Number Theory, was solved in 1993
after 350 years of intense struggle. The 1$ Million Poincaŕe conjecture, unanswered for over 100
years, was solved by Grigori Perleman (Russian mathematician; 1966 - ). In the time period
between when these words were written and when you read them it is quite likely that important
new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics is
beautiful. How can this happen? Well, they were busy learning mathematical skills, mathematical
reasoning, and mathematical applications. Arithmetical and statistical skills are useful skills ev-
erybody should possess. Who could argue with learning to reason? And we are all aware, to some

1
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degree or another, how mathematics shapes our technological society. But there is something more
to mathematics than its usefulness and utility. There is its beauty. And the beauty of mathematics
is one of its driving forces. As the famous Henri Poincaŕe (French mathematician; 1854 - 1912)
said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as both a liberal art and as a science. As a powerful science,
mathematics shapes our technological society and serves as an indispensable tool and language in
many fields. But it is not our purpose to explore these roles of mathematics here. This has been
done in many other fine, accessible books (e.g. [COM] and [TaAr]). Instead, our purpose here is
to journey down a path that values mathematics from its long tradition as a cornerstone of the
liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was rescued and preserved in monasteries. Knowledge
was categorized into the classical liberal arts and mathematics made up several of the seven
categories.1 During the Renaissance and the Scientific Revolution the importance of mathematics
as a science increased dramatically. Nonetheless, it also remained a central component of the liberal
arts during these periods. Indeed, mathematics has never lost its place within the liberal arts -
except in the contemporary classrooms and textbooks where the focus of attention has shifted
solely to the training of qualified mathematical scientists. If you are a student of the liberal arts
or if you simply want to study mathematics for its own sake, you should feel more at home on this
exploration than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more. In your exploration here you will see that mathematics is a human endeavor with its own
rich history of human struggle and accomplishment. You will see many of the other arts in non-
trivial roles: art and music to name two. There is also a fair share of philosophy and history.
Students in the humanities and social sciences, you should feel at home here too.

Mathematics is broad, dynamic, and connected to every area of study in one way or another.
There are places in mathematics for those in all areas of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

It is our hope that your discoveries and explorations along this path through the number theory
will help you glimpse some of this beauty. And we hope they will help you appreciate Russell’s
claim that:

. . . The true spirit of delight, the exaltation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

1These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and
the trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy.
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Finally, it is our hope that these discoveries and explorations enable you to make mathematics a
real part of your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have served as
beacons to people who have explored the continents of mathematics throughout history.

3





Navigating This Book

Before you begin, it will be helpful for us to briefly describe the set-up and conventions that are
used throughout this book.

As noted in the Preface, the fundamental part of this book is the Investigations. They are
the sequence of problems that will help guide you on your active exploration of mathematics. In
each chapter the investigations are numbered sequentially. You may work on these investigation
cooperatively in groups, they may often be part of homework, selected investigations may be solved
by your teacher for the purposes of illustration, or any of these and other combinations depending
on how your teacher decides to structure your learning experiences.

If you are stuck on an investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us: “If there is no struggle, there is no progress.” Keep
thinking about it, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Investigation numbers are bolded to help you identify the relationship between them.
Independent investigations are so-called to point out that the task is more significant than

the typical investigations. They may require more involved mathematical investigation, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections be-
tween mathematics and other fields - especially the liberal arts. Whether you complete a few of
the connections of your choice, all of the connections in each section, or are asked to find your own
connections is up to your teacher. But we hope that these connections will help you see how rich
mathematics’ connections are to the liberal arts, the fine arts, culture, and the human experience.

Further investigations, when included are meant to continue the investigations of the area in
question to a higher level. Often the level of sophistication of these investigations will be higher.
Additionally, our guidance will be more cursory.

Within each book in this series the chapters are chosen sequentially so there is a dominant theme
and direction to the book. However, it is often the case that chapters can be used independently
of one another - both within a given book and among books in the series. So you may find your
teacher choosing chapters from a number of different books - and even including “chapters” of
their own that they have created to craft a coherent course for you. More information on chapter
dependence within single books is available online.

Certain conventions are quite important to note. Because of the central role of proof in math-
ematics, definitions are essential. But different contexts suggest different degrees of formality. In
our text we use the following conventions regarding definitions:

5
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• An undefined term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An informal definition is italicized and bold faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A formal definition is bolded the first time it is used. This is a formal definition that
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a biographical name appears it is bolded and basic biographical
information is included parenthetically to provide some historical, cultural, and human connections.

6



Introduction: Number Theory

Mathematics is the queen of the sciences and number theory the queen of mathematics.

Carl Friedrich Gauss (German Mathematician; 1777 - 1855)

...number theory. It is a field of almost pristine irrelevance to everything except the wondrous
demonstration that pure numbers, no more substantial than Plato’s shadows, conceal magical
laws and orders that the mind can discover after all.

Newsweek Magazine (New Answer for An Old Problem; 5 July - 1993)

Number theory is the name given by mathematicians to the study of whole numbers and the
patterns, relationships, laws, and properties that govern these numbers. Our school experiences
with whole numbers were often characterized by memorizing multiplication tables, learning long
division algorithms, computing mysterious greatest common divisors, and the like, so you might
not agree with Carl Freidrich Gauss (German Mathematician; 1777 - 1855) that this is a very
regal area. And you might be hesitant to give it another look. Might $1 million change your mind?

0.1 $1 Million Dollar Problems

You will probably remember that a prime number is a positive integer whose only divisors are 1
and itself. So, for example, the numbers 2, 3, 5, 7, and 11 are the first five primes. (Contemporary
mathematicians do not consider the number 1 a prime.2 In a letter dated 7 June, 17423, Christian
Goldbach (Prussian Mathematician; 1690 - 1764), a mathematician of little renown outside of
this letter, wrote to Leonhard Euler (Swiss Mathematician; 1707 - 1783), who we meet often
across many areas of mathematics, that he had observed the following pattern:

2Otherwise it would complicate the fundamental theorem of arithmetic whose name you may not recognize, but
who you have seen and will see again later in this book.

3A copy of the letter is available at http://www.math.dartmouth.edu/~euler/correspondence/letters/OO0765.
pdf.
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2 = 1 + 1 3 = 1 + 1 + 1
4 = 1 + 3 5 = 1 + 1 + 3
6 = 3 + 3 7 = 1 + 3 + 3
8 = 3 + 5 9 = 3 + 3 + 3
10 = 5 + 5 11 = 3 + 3 + 5
12 = 5 + 7 13 = 3 + 5 + 5
14 = 7 + 7 15 = 5 + 5 + 5
16 = 5 + 11 17 = 5 + 5 + 7
18 = 5 + 13 19 = 5 + 7 + 7
20 = 7 + 13 21 = 7 + 7 + 7
22 = 11 + 11 23 = 5 + 5 + 13
24 = 11 + 13 25 = 3 + 11 + 11
26 = 13 + 13 27 = 5 + 11 + 11

...
...

On the basis of this inductive evidence, Goldbach surmised, or, as mathematicians would say,
conjectured , that any even positive integer could be written as the sum of two primes and
any odd positive integer could be written as the sum of three primes.4 These conjectures are
known, appropriately, as Goldbach’s two-prime conjecture and Goldbach’s three-prime
conjecture.

Progress has been made on the three-prime result since breakthrough work of Ivan Matvee-
vich Vinogradov (Soviet mathematician; 1891 - 1983) in the 1930’s. In fact, a 14 June, 2013
paper by Harald Helfgott (Peruvian mathematician; 1977 - ), which he posted online at the
electronic database arXiv5, claims a proof of this result. In other words, finally, after more than
250 years, the “easier” problem may have been solved.

What about the harder, more important two-prime result? The problem is so compelling it
played a central role in the notable novel Uncle Petros and Goldbach’s Conjecture by Apostolos
Doxiadis (Greek author; 1953 - ). When this 1992 novel was translated and published in English
in 2000 its publisher offered a $1 million dollar prize to anybody who could definitively resolve
Goldbach’s two-prime conjecture! The prize was not claimed. In other words, the problem remains
unresolved to this day despite tremendous efforts of mathematicians world-wide for two and one-
half centuries and a 1$ million dollar prize.

In Chapter 4 you will investigate two other $1 Million problems, the Riemann hypothesis and
the Birch and Swinnerton-Dyer conjecture.

0.2 High Drama

Intrigued? Many are. In fact, number theory has recently served as the vehicle for several major
theatrical productions. The Tony Award and Pulitzer Prize winning Broadway play Proof6 by

4In the time of Goldbach it was typical for mathematicians to consider 1 to be prime. Contemporary mathe-
maticians limit the conjectures to even numbers greater than 4 and odd numbers greater than 7 as 1 is no longer
considered a prime. See ?? for the rationale for this distinction.

5Available at the http://arxiv.org/abs/1305.2897.
6This play was subsequently made into a full-length movie starring Gwyneth Paltrow, Anthony Hopkins, and

Jake Gyllenhaal.
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David Auburn (American playwright; 1969 - ), revolves around the obsessions of an aging math-
ematician and his daughter, a mathematical prodigy who cares for her psychologically unstable
father, with number theoretic questions. While the open mathematical question whose “proof”
serves as a metaphor for this moving drama is never revealed, it could very well be Goldbach’s
conjecture.

Proof depicts the study of mathematics as a painful joy, not as the geek-making ob-
session of stereotype, but as human labor, both ennobling and humbling, by people
who, like musicians or painters (or playwrights), can envision an elusive beauty in the
universe and are therefore both enlivened by its pursuit and daunted by the commit-
ment. It does this not by showing them at work but by showing them trying to live
or cope when they can’t, won’t or simply aren’t, and in doing so makes the argument
that mathematics is a business for the common heart as well as the uncommon brain.7

In the Golden Globe winning and Oscar nominated movie A Beautiful Mind, the mathematical
insights of Nobel prize-winning mathematician John Nash (American Mathematician; 1928 -
) are portrayed visually through whole number patterns seen in arrays of encrypted messages.8

Although Nash’s insights were extraordinary, an ability to discover patterns and relationships like
this are critical to most mathematicians’ work.

0.3 What Good is This?

In our exploration of number theory, you might wonder “what good is this?” Some applications of
number theory in the first few topics – to art, architecture, biology – are immediate. Fermat’s Last
Theorem, partition congruences, and the content of later topics have applications and implications
that are beyond the level of this text. But a single example will provide some proper sense of the
scope of number theory’s applications: secret codes or encryption as it is more properly known.

Secret messages have a long history, at least as far back as the Caesar ciphers named after
Julius Caesar (Roman general, statesman, and author; 100 BC - 44 BC). In the Second World
War the Allies superior encryption and decryption proved critical to their eventual victory. Central
to the Allies’ efforts were the roles of the Navajo “code talkers” in keeping classified U.S. transmis-
sions secret and of British and Polish mathematicians, led by the brilliant but persecuted Alan
Turing (English Mathematician; 1912 - 1954), in deciphering the German Enigma codes.9 In con-
temporary communication information is secured by encryption schemes like the RSA algorithm
and the Advanced Encryption Standard10 which are based squarely on patterns, methods, and al-
gorithms from number theory. Without the development, testing, refinement and implementation
of these algorithms by thousands of mathematicians and engineers we could not: send classified
military information, have secure ATM access, have secure credit card transactions, have secure

7From the review “A common heart and uncommon brain,” by Bruce Weber, New York Times, 24 May, 2000,
E1,3.

8The movie took some dramatic license in these scenes. There is little evidence in the book on which the movie
is based, A Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash by Sylvia Nasar
(German journalist; 1947 - ), that Nash worked with or thought about encryption of this sort.

9See the section Additional Investigations for more on the Navajo code talkers and Alan Turing.
10Beginning in May, 2002, the National Institute for Standards and Technology specified the Advanced Encryption

Scheme for use “by U.S. Government organizations (and others) to protect sensitive information.” See csrc.nist.

gov/ for more information.
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email or Internet communication and data sharing, and so on. The Information Age in which we
live would be a ghost of what it now is. A broad variety of accessible material on encryption is
available. (See e.g. [Flan], [Sin], [Gar], [Bur; Ch. 7, Sect. 5], [Kah].)

0.4 Recent Breakthroughs

In addition to the numerous applications of number theory that pervade the Information Age,
there have been many stunning breakthroughs on the more theoretical side of number theory
during the past few decades. In 1993, Andrew Wiles (English Mathematician; 1953 - ) shocked
the world by discovering/inventing a proof of Fermat’s Last Theorem, not only the most famous
and long-standing problem in number theory, but in all of mathematics. We’ll discover more about
the mathematical story of Fermat’s Last Theorem and its solution, an event that appeared on the
front page of the New York Times11 and resulted in Wiles being named as one of People Magazine’s
“25 Most Intriguing People of 1993”. We will investigate the surprising extensions made by Ken
Ono (American mathematician; 1968 - ) on the hundred year old work on partition congruences
by the remarkable Srinivasa Ramanujan’s (Indian Mathematician; 1887 - 1920). And we will
investigate twin primes, learning about Yitang Zhang (Chinese mathematician; 1955 - ) who
shocked the world on April 17, 2013 with his bounded gaps theorem which nearly solves a centuries
old effort to understand how many twin primes there are.

Each of these events of the last 25 years will be remembered as key chapters in the history of
mathematics even 1000 years from now. These offer strong challenges to the widespread misper-
ceptions of mathematics as a static, completed, archaic field, don’t they?

0.5 Yeah, But Can We Do It?

Assuming you are now intrigued by these historical, humanistic, and utilitarian aspects of number
theory, you might wonder whether we can actually explore any significant number theory. They’re
offering million dollar prizes and people get their picture on the front page of the New York Times
for solving these problems. It sounds daunting. Godfrey H. Hardy (English Mathematician;
1877 - 1947), one of the foremost number theorists of all times, offers enthusiastic encouragement:

The elementary theory of numbers should be one of the very best subjects for early
mathematical instruction. It demands very little previous knowledge; its subject matter
is tangible and familiar; the processes of reasoning which it employs are simple, general
and few; and it is unique among the mathematical sciences in its appeal to natural
human curiosity. A month’s intelligent instruction in the theory of numbers ought to
be twice as instructive, twice as useful, and at least ten times as entertaining as the
same amount of “calculus for engineers.”

Indeed, despite its tantalizing, centuries-old problems and the extreme importance of its appli-
cations, there are great stories of number theory’s accessibility. Later we will meet Rhiannon L.
Weaver (American student; - ), a Penn State undergraduate who contributed a critical sequel to
Ken Ono’s work on partition congruences. And there is Sarah Flannery (Irish student; 1982 - ),

1124 June, 1993; the day after Wiles announced his proof at the end of three lectures he gave at a conference in
Cambridge, England.
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a high school student who gained international acclaim by developing an encryption algorithm that
originally was thought to have been a dramatic improvement over the universal encryption stan-
dard set by the RSA algorithm. She was awarded Ireland’s Young Scientist of the Year Award,
awarded Europe’s Young Scientist of the Year Award, and was featured in news media reports
worldwide. Her memoir, In Code: A Mathematical Journey, is a wonderful account of the fasci-
nation that can be found in mathematics if given the opportunity and encouragement to explore
rather than the mundane tasks of memorizing and regurgitating. And we’ll investigate some of
the mathematics of partitions which is the area that Kaavya Jayram (Indian student; 1998 - )
investigates. At age 12 she had a paper on this topic published in the prestigious International
Journal of Number Theory .

So here’s your opportunity.
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Chapter 1

Fibonacci Numbers

All is number.

The Pythagoreans (Greek sect/cult; 500 BC - 200 BC)

In mathematics, if a pattern occurs, we can go on to ask, Why does it occur? What does it
signify? And we can find answers to these questions. In fact, for every pattern that appears,
a mathematician feels [s]he ought to know why it appears.

W. W. Sawyer (English mathematician and author; 1911 - 2008)

Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.1

G.W. Leibniz (German mathematician; 1646 - 1716)

To everything there is a number. There is one you. Two eyes looking at this page. Three
figures in the Christian trinity. Four legs on a chair. Five petals on the columbine flower. Six legs
on insects. Seven is lucky. Eight counter-clockwise spirals of seeds on some pinecones. So many
things to count. And from such counting, remarkable relationships and connections can emerge.
Some are spurious, curiosities to the numerologists who use number mysticism as astrologers
use the signs of the Zodiac. The Pythagoreans, the important sixth century B.C. sect of Greek
mathematicians, and other important mathematicians have dabbled in numerology. Yet it is a
subject short on substance, long on coincidence and happenstance.2 When mathematicians see
relationships and connections among numbers they seek to discover underlying causal patterns and
mechanisms. For mathematics is the science of patterns.3

1.1 A Remarkable Sequence of Numbers

In botany a particularly compelling pattern of numbers emerges. When we count the number of
petals on many different types of flowers, the number of spirals that appear on the surface textures
of many fruits, and the arrangement of leaves on tree branches they usually do not find a random

1Written on 17 April, 1712 in a letter to Christian Goldbach who we have already met.
2See the wonderful book Numerology, or, What Pythagoras Wrought by Underwood Dudley, Mathematical

Association of America, 1997 for a vigorous debunking of numerology.
3While the statement “Mathematics is the science of patterns” is a bit of an oversimplification, contemporary

mathematicians generally agree this is about as good as can be done in a single sentence. See the book Mathematics:
The Science of Patterns by Keith Devlin for a comprehensive discussion.

13



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

collection of numbers. Rather, the numbers 5, 89, 13, 34, 8, 21, 55, 144, and 3 occur repeatedly and
almost exclusively.

13 year-old Aidan (American student; 1998 - ) built a tree whose leaf patterns were modeled
on these numbers out of PVC pipe and solar panels which demonstrated a 50% improvement over
flat-panel solar collection. His research on this topic, at age 13, won him the 2011 Young Naturalist
Award from the American Museum of Natural History.4 His research essay concludes with the
line, “But the best part of what I learned was that even in the darkest days of winter, nature is
still trying to tell us its secrets.”

Arranged as they are above there might not seem to be anything striking about these numbers.
But, in numerical order the numbers

3, 5, 8, 13, 21, 34, 55, 89, 144

form a clear pattern. Each number is the sum of the two that come before it. Using this we can
extend the pattern forward and backward:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

These numbers are called the Fibonacci numbers.
The Fibonacci numbers are denoted by f1 = 1, f2 = 1, f3 = 2, f4 = 3 and so on. By definition,

each new Fibonacci number is obtained by adding the previous two Fibonacci numbers. Hence the
defining relation of the Fibonacci numbers is expressed algebraically as fn = fn−1 + fn−2
subject to the initial conditions f1 = 1 and f2 = 1. This is a recurrence relation: to calculate a
Fibonacci number you need to know the previous Fibonacci numbers.

In the Investigations below you will see a few of the varied situations in which the Fibonacci
numbers arise. Despite its regular occurence in botany, this was the the genesis of the sequence.
Instead, the sequence first appeared as a solution of a typically hokey word problem, one about
rabbits, that appeared in an important mathematical text published in 1202 by a mathematician
nicknamed Fibonacci.

1.2 Fibonacci

Like all other areas of learning, mathematics was dormant during the long Dark Ages (circa 450 -
1000 A.D.) in Europe. While mathematics awoke gradually over the two hundred years following
the Dark Ages, its rejuvenation is marked most precisely by the works of Fibonacci. Properly
named Leonardo of Pisa (Italian mathematician; 1175 - 1250), this son of a well-known Italian
merchant was better known as Fibonacci (a contraction of filus Bonaccio, “son of Bonaccio”).
Fibonacci traveled widely as a student, learning methods of Arabic mathematics when studying
in Northern Africa and learning the system of Hindu-Arabic numerals. Fibonacci assembled what
he had learned into Liber Abaci (literally “book of the abacus”, meaning book of arithmetic), the
most comprehensive book of arithmetic of its time. It laid out the benefits of the Hindu-Arabic
numeral system and is partially responsible for its wide acceptance subsequently. Fibonacci went
on to publish several other books that focused mainly on arithmetic and algebra. These textbooks
and his success in mathematical competitions in the court of Emperor Frederick II established him
as the premier mathematician of the age.

4See http://www.amnh.org/learn-teach/young-naturalist-awards/winning-essays2/2011-winning-essays/

the-secret-of-the-fibonacci-sequence-in-trees for details.
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Figure 1.1: Aidan’s solar panel Fibonacci tree.

1.3 Fibonacci’s Problem

Despite his impact on the revival of mathematics and the acceptance of the Hindu-Arabic nu-
meral system, Fibonacci’s most widespread notoriety comes from a single problem from among
the hundreds that he used in Liber Abaci to illustrate the importance of the ideas laid out in this
textbook. Fibonacci’s famous problem was:

How many pairs of rabbits will be produced in a year, beginning with a single pair, if
in every month each pair bears a new pair which becomes productive from the second
month on?

If we represent each pair of juvenile rabbits by xy and each pair of mature rabbits by XY , we
can trace the number of rabbit pairs over the months as follows:

It was from this somewhat artificial word problem, not their appearance in nature, that the
Fibonacci numbers were first discovered. Since their discovery they have, like breeding rabbits,
flourished.
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Figure 1.2: Fibonacci’s rabbits

1.4 Fibonacci’s Rabbits

1. Continue the breeding tree in Figure 1.2 for three more months, checking that it yields the
next three Fibonacci numbers. (You might find it useful to use different colors rather than
symbols to distinguish mature from juvenile rabbit pairs.)

2. Answer Fibonacci’s question: how many pairs will be produced in a year?

We would like to know why the pattern of Fibonacci numbers appears in this hypothetical
population.

3. Determine the number of adult rabbit pairs in each of the months 2−8. What do you notice?

4. How can the number of adult rabbit pairs in a given month be determined by the number
of rabbit pairs in earlier months?

5. Determine the number of juvenile rabbit pairs in each of the months 2 − 8. What do you
notice?

6. How can the number of juvenile rabbit pairs in a given month be determined by the number
of rabbit pairs in earlier months? Explain why this happens.

7. Use Investigation 3 - Investigation 6 to prove that the number of pairs of rabbits must also
follow the defining relation fn = fn−1 + fn−2 of the Fibonacci numbers.

8. Determine the twentieth Fibonacci number

16
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9. How hard would it be to determine the fiftieth Fibonacci number? (Note: In Topic 2 we will
revisit this problem.)

Figure 1.3: Spirals in a pinecone and a sunflower

1.5 Fibonacci Spirals in Nature

In Figure 1.3 are images of a pinecone and a sunflower. Their seeds emerge from the center, where
the cone and flower are attached to the plant. As they develop at this meristem, the seeds (which
are actually cone scales or fruits in this case and are known collectively as primordia in their
developmental phase) grow and move outward away from the meristem. As they do so they form a
regular pattern. Your eyes should see spiral arcs made from sequences of adjacent seeds, some that
move away from the meristem in clockwise manner and others that move away from the meristem
in a counter-clockwise manner.

In the appendix there are several copies of these images.

10. Using a marker, color one of the spiral arcs in the pinecone that moves in a clockwise manner
from the outer edge of the image to the center of the meristem. You will note that the spiral
arc doesn’t continue perfectly at the center of the meristem. Skip over the spiral that is
adjacent to the one you just colored and color the next one that appears to have the same
orientation after that. Continue this way around the pinecone until you have colored as many
non-adjacent spiral arcs in the clockwise family as you can. How many clockwise spiral arcs
are there?

11. Using a different color marker and another copy of the image of the pinecone, color the
counter-clockwise family of spiral arcs in the same way that you colored the clockwise family.
How many counter-clockwise spiral arcs are there?
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12. Repeat Investigation 10 for the sunflower.

13. Repeat Investigation 11 for the sunflower.

14. What is surprising about your answers to Investigation 10 - Investigation 13?

15. Pinecones and sunflowers come in many varieties, some tightly packed and some more openly
packed. Would you be surprised to learn that the number of spiral arcs in virtually all
pinecones and sunflowers are Fibonacci numbers? Indeed, Fibonacci numbers appear often
in flowers and seed-pods. Find several other specific examples.

1.6 Honeybee Family Trees

A typical honeybee hive consists of a single queen, upwards of 200 drones, and 20, 000 or more
worker bees. The queen and worker bees are female, while the drones are male. All offspring
are produced by the queen, the worker bees do not reproduce. The drones’ role is to help in
reproduction. Fertilized eggs result in either a new queen or worker bees while unfertilized eggs
result in drones. That is, all females - whether a new queen or the worker bees - have a mother,
the queen, and a father, a drone. Drones only a mother, the queen, but no father.

16. Using the standard symbols for male and female, ♂and ♀, respectively, make a family tree
of a male bee that goes back five generations.

17. Use the family tree in Investigation 16 to determine the number of i) parents, ii) grandpar-
ents, iii) great-grandparents, iv) great-great-grandparents, and v) great-great-great-grandparents
a male bee has. What do you notice about these numbers?

18. Using the standard symbols for male and female, ♂and ♀, respectively, make a family tree
of a female that goes back five generations.

19. Use the family tree in Investigation 18 to determine the number of i) parents, ii) grandpar-
ents, iii) great-grandparents, iv) great-great-grandparents, and v) great-great-great-grandparents
a female bee has. What do you notice about these numbers?

Honeybees bring to mind two other mathematical marvels. First, bees build their honeycomb
in hexagonal cells because this regular tessellation provides the optimal storage for a given use of
wax. Bees are mathematicians of some merit!

More impressively, honeybees communicate the location of pollen sources with an intricate
waggle dance. This dance was successfully translated only during the middle of the twentieth
century. The ability of honeybees to communicate using such a sophisticated grammar remained a
mystery until recently. In the mid 1990s the mathematician Barbara Shipman (; - ) discovered
that the grammar for the waggle dance language can be described by the same higher dimensional
flag manifolds that are critical tools in the description of certain quantum mechanical fields and
quantum mechanical interactions. 5

As Galileo said,

5The article ”Quantum honeybees” by Adam Frank, Discover, November, 1997, pp. 80-87 has an accessible
description of Shipman’s discoveries.
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The universe stands continually open to our gaze, but it cannot be understood unless
one first learns to comprehend the language and interpret the characters in which it is
written. It is written in the language of mathematics.

Our ability to see this in any facet of the natural, physical, and human world is limited only by our
mathematical imagination. Shipman just happened to be a topologist studying higher dimensional
flag manifolds and the daughter of a beekeeper who learned about the waggle dance from her father
as a small child.

For more on both of these interesting topics, see the chapter “What’s Worth Knowing?” in
Discovering the Art of Mathematics - Student Toolbox.

1.7 Plant Growth

Fibonacci’s rabbit problem is certainly not realistic. Rabbits do not produce in such a regular
way and they die. Nonetheless, it is not difficult to envision situations where such growth is more
realistic.

Consider the growth of a plant. As a plant grows a new shoot this shoot is not immediately
ready to produce a new shoot of its own right away. Suppose the shoot has to grow two weeks
before it can give rise to exactly one new shoot and then it is able to grow one new shoot each
week thereafter. If each shoot behaves in this way a like this will, four weeks after germination,
look like:

Figure 1.4: A four week old Fibonacci Plant

20. Draw the plant in Figure 1.4 after six weeks.

21. Draw the plant in Figure 1.4 after nine weeks. (Note: You might use the same coloring
techniques as you applied with the rabbits to help you.)

22. What do you notice about the number of shoots on this plant at the end of each week?

23. Prove why, in this situation, the number of shoots is always a Fibonacci number.

One plant that exhibits this type of growth is the sneezewort.
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1.8 Two Fibonacci Identities

One of the reasons for mathematicians’ fascination with Fibonacci numbers is the many patterns
and settings in which they arise. In fact, there is an entire journal, the Fibonacci Quarterly ,
devoted to the Fibonacci numbers and other similar numbers.

You will investigate two well-known identities here.

24. Write down and then evaluate the sum of the first three Fibonacci numbers; i.e., 1+1+2 =?

25. Write down and then evaluate the sum of the first four Fibonacci numbers.

26. Write down and then evaluate the sum of the first five Fibonacci numbers.

27. Write down and then evaluate the sum of the first six Fibonacci numbers.

28. Write down and then evaluate the sum of the first seven Fibonacci numbers.

29. How are the sums in Investigation 24 - Investigation 28 related to the Fibonacci numbers?
State a conjecture regarding the value of the sum of the first n Fibonacci numbers.

30. Add the eighth Fibonacci number, 21, to each side of your equation in Investigation 28.
Can you see how this generates the correct result for the sum of the first eight Fibonacci
numbers?

31. Generalize Investigation 30. That is, show that if you add the (n + 1)st Fibonacci number
to each side of your equation in Investigation 29 this will generate the correct next stage.

32. Does this prove that your result in Investigation 29 is correct for all values of n? Explain.

Pascal’s triangle is the triangular array of numbers in Figure 1.5. Each entry is obtained by
adding the two numbers in the previous row that are closest to the entry being obtained.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Figure 1.5: Pascal’s Triangle

33. Determine the next three rows in Pascal’s triangle.

The importance of Pascal’s triangle lies in the fact that it catalogues the binomial coefficients.
For example, when expanding (x + y)2 we get 1x2 + 2xy + 1y2 and these coefficients are exactly
those in the second row of Pascal’s triangle. (Note: The row which contains the single entry 1 is
called the zeroth row.)
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Pascal’s triangle is named after Blaise Pascal (French mathematician, philosopher and in-
ventor; 1623 - 1662). By the age of nineteen Pascal had invented the first working mechanical
calculator and precursor to the modern computer. He “discovered” Pascal’s triangle in his mid
twenties while investigating the mathematical nature of gambling problems, work which would
lead to the development of what we now called the field of mathematical probability. By the age of
30 he withdrew from his mathematical and scientific efforts to focus on philosophy and religion.6

Like many other mathematical objects, Pascal’s triangle is named for the first person whose
research utilizing the object had far-reaching effects. Often these are not the first discoverers.
Pascal’s triangle was known in many other non-European cultures hundreds of years earlier.

34. Expand (x+y)3 and show that the coefficients are correctly given by the third row of Pascal’s
triangle.

35. Make a conjecture about the expansion of (x+ y)6.

36. Add the entries in the individual rows of Pascal’s triangle. What pattern do you see?

We cannot add the columns or diagonals of Pascal’s triangle because they go on forever. But
one can add the shallow diagonals. The first shallow diagonal contains the left-most 1 in the fourth
row and the 2 in the third row. The second shallow diagonal contains the left-most 1 in the fifth
row, the left-most 3 in the fourth row, and the right-most 1 in the third row.

37. What are the sums of the first and second shallow diagonals?

38. What numbers make up the third shallow diagonal and what is their sum?

39. What numbers make up the fourth shallow diagonal and what is their sum?

40. What numbers make up the fifth shallow diagonal and what is their sum?

41. What do you notice about the sums of the shallow diagonals?

There are many other fabulous patterns hidden in Pascal’s triangle. The interested reader is
invited to look up the term Polya block walking in any book on combinatorics for interesting ways
to generate them.

1.9 The Mandelbrot Set

Pictured in Figure 1.6, the Mandelbrot set is one of the most famous sets in mathematics. It is
an important example of a fractal - a mathematical object that is approximately self-similar across
an infinity of scales. This set was named after Benôıt Mandelbrot (French mathematician; 1924
- 2010) who, as an IBM researcher in the 1970s, was the first to use computers to explore visually
the complex mathematical objects that had been first investigated by Pierre Fatou (French
mathematician; 1878 - 1929) and Gaston Julia (French mathematician; 1893 - 1978). Fractals
play a critical role in many natural and physical processes. A wealth of sophisticated, beautiful,

6Elementary Number Theory, 4th edition, by D.M. Burton, p. 10.
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interactive Internet sites on fractals exist and there are accessible texts that could be used in
parallel with this text.7

You will need to work through this section with the help of the Internet. In particular, you
will need interactive scripts that enable you to view microscopic features of the Mandelbrot set by
zooming in repeatedly. There are many sites where this can be done, but we recommend the Ju-
lia and Mandelbrot Explorer located at http://aleph0.clarku.edu/~djoyce/julia/explorer.
html .

You must be aware that as you zoom in you will lose resolution when you employ the default
settings. To regain resolution after repeatedly zooming in you will have to increase the number of
iterations that the script uses to produce the images.

The Mandelbrot set looks a bit like a beetle that has smaller beetles that appear regularly
around its boundary. No matter how far you zoom in you will continue to see these structures,
which are called bulbs. In Figure 1.6, the rear cusp of the Mandelbrot set, the dimple on the right
edge at 3:00, is called bulb 1. The front bud, the largest, circular bud on the left at 9:00, is called
bulb 2. Label these bulbs. If we locate the largest bulb along the top half of the Mandelbrot
set between the cusp labeled 1 and the bulb labeled 2 we see it is located right at the top of
the Mandelbrot set, at 12:00. At the tip of this bulb there is a thin filament that splits into two
branches. The filaments play a critical role in this bud’s mathematical significance so we will label
this bulb 3.

42. Locate the largest bulb along the top half of the Mandelbrot set between the bulb labeled 2
and the bulb labeled 3. Zoom in on this bulb so you can determine the number of filaments
that make up the starburst at the tip of this bulb. This number will be the label for this
bulb.

43. Now locate the largest bulb between the bulb labeled 3 and the one you found in Investi-
gation 42. Zoom in on it so you can determine the number of filaments that make up the
starburst at its tip. This number will be the label for the bulb.

44. Repeat Investigation 43, locating and labeling the largest bulb that appears between the
bulbs you found in Investigation 42 andInvestigation 43.

45. Repeat Investigation 43 again, locating and labeling the largest bulb that appears between
the bulbs you found in Investigation 43 and Investigation 44.

46. Repeat Investigation 43 again, locating and labeling the largest bulb that appears between
the bulbs you found in Investigation 44 and Investigation 45.

47. Are you surprised by the pattern you are finding?

7The classic book in this field in Mandelbrot’s The Fractal Geometry of Nature, W.H. Free-
man, 1983. Chaos and Fractals: New Frontiers in Science by Heinz-Otto Peitgen, Martmust Ju-
rgens, and Dietmar Saupe, Springer-Verlag, 1992 is a beautiful book as well. The text
Chaos Under Control: The Art and Science of Complexity by David Peak and Michael Frame, W.H. Free-
man, 1994 was designed specifically for mathematics for liberal arts courses and is most highly recommended
for this audience. Internet sites abound. In addition to the two above, the Dynamical Systems and Technology
Project at Boston University – http://math.bu.edu/DYSYS/ and Mary Ann Connors Exploring Fractals site –
http://www.math.umass.edu/ mconnors/fractal/fractal.html are excellent places to start.

22

http://aleph0.clarku.edu/~djoyce/julia/explorer.html
http://aleph0.clarku.edu/~djoyce/julia/explorer.html


DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 1.6: The Mandelbrot Set

48. Spend a few minutes zooming in on the filaments off the end of any single bud you have
considered. Are the filaments just wisps of fractal dust or are there surprises hidden in
them? Explain.

1.10 Fibonacci Numbers Everywhere?

Fibonacci numbers certainly capture the imagination. They have achieved an almost cult-like
following, especially on the Internet where all sorts of mathematical aficionados pay homage to
them. Some dubious occurrences of Fibonacci numbers are mixed below with some meritorious
occurrences. Which is which?

49. You have 2 hands. 2 is a Fibonacci number. What else about your hands has Fibonacci
numbers?

50. Slice open an apple, banana, or tomato. There are structures to count. Are there numbers in
each of these structures that are Fibonacci numbers? What about other fruits and vegetables?

51. Consider the keys on a piano that make up an octave, as pictured in Figure 1.7. Where do
you see Fibonacci numbers?

52. In basketball there are five players on each team. Five is a Fibonacci number. There are
many other Fibonacci numbers related to the players, positions, and scoring. Describe them.

53. Find or make up an example of your own where Fibonacci numbers occur. Make sure your
example is not related to those that we are studying in the Sections above and below.
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Figure 1.7: An octave on a piano keyboard

The appearance of the Fibonacci numbers in the examples above seem spurious. In some cases
they are, but in some they are not. In fact, Fibonacci numbers occur routinely in music. They have
played important roles in the music of Mozart, Beethoven, Bartok, and Schillinger. The patterns
of music are harmoniously connected to the patterns of mathematics.8

There aren’t enough small numbers to meet the many demands made of them.

Richard Guy (British mathematician; 1916 - )

54. How does Guy’s reminder help us understand the apparently spurious appearance of Fi-
bonacci numbers in our hands, in basketball, and in other surprising situations?

1.11 Phyllotaxis

Phyllotaxis is from the Greek phyllo, meaning leaf, and taxis, meaning arrangement. It means the
study of the arrangement of leaves in relation to a stem or one another. In the Appendix, there is
a template for a specific arrangement of leaves on a stem. Either copy or cut out this template.

The numbered rectangular sections serve as the leaves and they are attached to the main
stem by a smaller stems represented by large dots at the base of each rectangle. Complete the
following tasks to complete your model stem that will help you discover the mathematical aspects
of phyllotaxis:

• Copy the template or remove it from you book.

• Draw a series of parallel lines through the stems (dots) at the bases of the leaves (rectangles)
which connect: leaf 6 to leaf 5; leaf 4 to leaf 3; and leaf 2 to leaf 1.

• With a different color pen or marker, draw a series of parallel lines through the stems (dots)
at the bases of the leaves (rectangles) which connect: leaf 1 to leaf 2 to leaf 3 and leaf 4 to
leaf 5 to leaf 6.

8See e.g. Tibor Bachmann and Peter J. Bachmann, “An analysis of Bela Bartok’s music through Fibonaccian
numbers and the golden mean”, The Musical Quarterly, ??; Jonathan Kramer, “The Fibonacci series in twentieth
century music”, Journal of Music Theory, vol. 17, no. 1, Spring 1973, pp. 110 - 149; Truid Hammel Garland and
Charity Vaughan Kahn, Chapter 8: The Curiosities, in Math and Music: Harmonious Connections, Dale Seymour
Publications, 1995.
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Figure 1.8: Early stages of growth of the Bird of Paradise flower.

• Cut the template along all of the solid lines.

• Roll it lengthwise into a cylinder, joining edge B to edge A, with the excess along edge B
rolled inside, and join the edges with tape.

• Bend the leaves (rectangles) down along the dotted lines at their bases.

This resulting model is that of a stem in which there are five leaves per tier. Leaves 1 - 5 make
up this first tier and leaf 6 begins the next tier. Position your stem to stand vertically with the
smallest leaf, leaf 6, at the top and the largest leaf, leaf 1, at the bottom.

55. Draw a top view of the stem, placing the leaves carefully in their correct position, possibly
shrinking the diameter of the stem slightly to give it a more appropriate scale, and numbering
the leaves so the order of their appearance can be seen.

56. Determine the angle, measured counterclockwise, between successive leaves (e.g. leaf 1 and
leaf 2) in this arrangement.

57. Traverse the leaves in order, from 1 - 5, counterclockwise when viewed from above. Describe
the path. For example, how many complete revolutions must you make before you arrive
back at your starting place where the sixth leaf will start the next tier of leaves? And how
is your path illustrated on your model stem?

58. Use Investigation 57 to determine the fraction of a complete revolution between successive
leaves. Compare with Investigation 56.
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59. In what ways might this leaf arrangement be beneficial to this plant?

60. Determine the angle, measured clockwise, between successive leaves.

61. Traverse the leaves in order, from 1 - 5, clockwise when viewed from above. Describe this
path as in Investigation 57.

62. Use Investigation 61 to determine the fraction of a complete revolution between successive
leaves. Compare with Investigation 60.

The leaf arrangement in our model is called a 2/5 phyllotactic ratio.

63. You should see the defining relation of Fibonacci numbers at work in our model. Explain.

Suppose we were to arrange leaves so there were eight leaves per tier and there were three
complete counterclockwise revolutions, when viewed from above, before arriving back at your
starting place where the ninth leaf would start the next tier of leaves. Such an arrangement would
be referred to as an arrangement with a 3/8 phyllotactic ratio.

64. Draw a top view of this arrangement, much as you did in Investigation 55.

65. What would be the angle between successive leaves?

66. If you traverse the leaves in order, from 1 - 8, clockwise when viewed from above, how many
complete revolutions must you make before you arrive back at your starting place where the
ninth leaf will start the next tier of leaves? What do you notice about this number?

67. Will the 3/8 phyllotactic ratio result in a similar connection to the Fibonacci numbers that
you described in Investigation 63? Explain.

68. Would the arrangement provide the same type of benefits to the plant as the 2/5 ratio? If so,
what attributes of the plant might determine whether a 2/5 or 3/8 ratio was more beneficial?

69. Describe an arrangement with a 5/13 phyllotactic ratio in detail. Does it continue the pattern
we have observed in Investigation 63 and Investigation 67?

70. What would the next phyllotactic ratio be? Describe an arrangement with this ratio in
detail. Do you think it continues the pattern we have observed in Investigation 63 and
Investigation 67? Explain.

71. For Bird of Paradise flower pictured on the left of Figure 1.9 determine which flowers are
directly above others. Is this arrangement a Fibonacci phylotactic arragement? Explain.

72. Repeat Investigation 71 for the flower pictured in the center of Figure 1.9.

73. Repeat Investigation 71 for the flower pictured on the right of Figure 1.9.

For trees that have leaves that are arranged in spirals, this type of Fibonacci phyllotaxis is the
rule. Some phyllotactic ratios for common trees are
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Figure 1.9: Bird of Paradise flowers in full bloom.

1/2 Elm and Linden
1/3 Beech and Hazel
2/5 Oak, Cherry, and Apple
3/8 Poplar and Rose
5/13 Willow and Almond

We should be cautious however. As the important geometer H.S.M. Coxeter (British Math-
ematician; 1907 - 2003) said:

It should be frankly admitted that in some plants the numbers do not belong to the
sequence of f’s [Fibonacci numbers] but to the sequence of g’s [Lucas numbers] or even
to the still more anomalous sequences 3, 1, 4, 5, 9, ... or 5, 2, 7, 9, 16, ... Thus we must face
the fact that phyllotaxis is really not a universal law but only a fascinatingly prevalent
tendency.

74. Let us break away from the Fibonacci numbers and make an arrangement with a 4/10
phyllotactic ratio. Describe it and explain whether it would be as beneficial as those above.

75. Describe a phyllotactic ratio that does not involve Fibonacci numbers but avoids the difficulty
in Investigation 74. Show that when you include the number of complete revolutions needed
to traverse the tier of leaves in the clockwise direction, when viewed from above, this number
together with the two numbers in the ratio satisfy the defining relation for Fibonacci numbers.

1.12 Fibonacci Spirals from Optimal Packing

As noted in Section 1.5, objects like pinecones are made up of primordia that originate at a meris-
tem and then move outward from its center as new promordia develop. Mathematicians have long
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Figure 1.10: Norway Spruce primordia development

sought to understand the mechanics of this process and there has been much recent progress. An
excellent description of some of the research, related on-line tutorials, and impressive interactive ap-
plets for exploration is available from Phyllotaxis - An Interactive Site for the Mathematical Study of Plant Pattern Formation
which was developed at Smith College and is available at www.math.smith.edu/~phyllo/index.
html .

In this section we briefly investigate one of the mechanisms for the development of spiral
patterns. The photograph on the left of Figure 1.10 is scanning electron micrograph of a Norway
spruce shoot. On the right is a schematic of the micrograph. The primordia are labeled according
to age, those with higher numbers being older. The location of the genesis of each new primordia
is, in this model, determined by the least crowded space at the edge of the meristem.

In the appendix there are several copies of the schematic. Use them as needed to complete the
investigations below.

76. By finding the least crowded spaces, determine where the next five primordia are likely to
appear. Call them 0,−1,−2,−3, and −4 and draw them in on one of the copies of the
schematic.

77. Why would it be beneficial for plants to develop in this way, with the primordia appearing in
the least crowded space along the edge of the meristem at each stage in their development?

78. In looking at the schematic, you should see a pattern of counterclockwise spiral arcs . On
a copy of the schematic, color their arms just as you did in Section II. How many counter-
clockwise spiral arcs are there?

79. What do you notice about the identifying numbers of successive primordia along the arms
of the spiral arcs?
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80. In looking at the schematic, you should also see a pattern of clockwise spiral arcs. On a copy
of the schematic, color their arms just as you did in Section II. How many clockwise spirals
are there?

81. What do you notice about the identifying numbers of successive primordia along the arms
of the spiral arcs?

82. Similarly, you should see an almost radial pattern of arcs forming from the edge of the
meristem where successive primordia differ by a constant Fibonacci number. Color in the
arcs of this pattern much as you did above. How many radial arcs are there?

Of course, the rate of growth plays an important role in determining which Fibonacci number
is evident in a given spiral or configuration of petals. For an interesting illustration of how growth
rate changes the number of spirals, see Figs. 4.32 - 4.35 on pp. 119-21 of [CoGu].

83. On a copy of the schematic, put a point in the center of the meristem. Then draw lines from:
the center point to the center of primordia 1; the center point to the center of primordia 2;
the center point to the center of primordia 3; and the center point to the center of primordia
4. Use them to measure the angle between primordia 1 and primordia 2; primordia 2 and
primordia 3; primordia 3 and primordia 4. How are the angles related to others that appear
in this chapter?

The angle you found in Investigation 83 is called the Golden Angle. It is a sibling of the
Golden Ratio - our next topic.
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Chapter 2

The Golden Ratio

Geometry has two great treasures; one is the theorem of Pythagoras; the other, the division
of a line into extreme and mean ratio. The first we may compare to a measure of gold; the
second we may name a precious jewel.

Johannes Kepler (German mathematician; 1571 - 1630)

Mighty is geometry; joined with art, resistless.

Euripedes (Greek dramatist; 480 - 406 BC)

We are all familiar with the counting numbers 1, 2, 3, . . . We are also familiar with the
integers . . . ,−2,−1, 0, 1, 2, . . . In working with circles and trigonometry we have all used the
remarkable number pi, denoted by the Greek letter that it is named after: π = 3.14159265 . . .
Many of us are familiar with the base of the natural logarithm1, the number e = 2.71828182 . . .,
which is used in the analysis of probabilities, interest rates, population growth and many other
important processes. Some of us might even have experience with the number i =

√
−1 that is

the base of the imaginary or complex number system. Much less well-known is the Golden Ratio
which is the number denoted by the Greek letter phi:

φ =
1 +
√

5

2
= 1.61803398 . . .

Yet the Golden Ratio was widely used before the discovery of both e and i. Moreover, it was
widely used before there was any notion of zero or negative numbers!

2.1 The Golden Ratio

It is claimed by many that the Golden Ratio played a prominent role in the construction of the
great pyramids and the Greek Parthenon, the design of the United Nations buildings, in the
paintings of Leonardo da Vinci (sculptor, painter, inventor, scientist, engineer; 1452 - 1519)
and Albrecht Dürer (German artist; 1471 - 1528), in the music of Béla Viktor János Bartok

1We denote this constant by the letter e in honor of Leonhard Euler (Swiss mathematician; 1707 - 1783) who
was the first to investigate its remarkable properties. He also discovered the remarkable formula uniting many of
these key constants: eiπ + 1 = 0. For more on this formula, see the chapter on

√
−1 in Discovering the Art of

Mathematics - Truth, Reasoning, Certainty and Proof.
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Figure 2.1: The Great Pyramid of Khufu (Cheops). Notice the size of the visitors.

(Hungarian composer and pianist; 1881 - 1945) and Johann Sebastian Bach (German musician
and composer; 1685 - 1750), and psychological studies have even suggested that it is the most
pleasing ratio there is – perhaps explaining its use in architecture, art and music2. In fact, the
Greek letter φ is used to denote this constant in honor of the Greek artist Phidias (Greek sculptor,
painter and architect; 480 - 430 BCE) who used the Golden Ratio in his famous sculptures3.

It is strange that a number that is widely known by artists, architects, biologists, and musicians
is rarely considered in mathematics courses. As this is a mathematics for liberal arts course, this
seems like a perfect opportunity.

2.2 Division into Extreme and Mean Ratio

The Golden Ratio is the number φ = 1+
√
5

2 . The notion of the Golden Ratio, although not so-
called at that time, was first introduced by the ancient Greeks. As Greek mathematics was based
solely on geometric methods, the Golden Ratio was introduced geometrically. It arose from the
division of a line segment into two special segments. This process is called the division of a line
into extreme and mean ratio; it appeared as Definition 3 in Book VI of Euclid’s Elements4 :

A straight line is said to have been cut in extreme and mean ratio when, as the
whole line is to the greater segment, so is the greater to the less.

2See, for example, the section ”Experimental Aesthetics” in Chapter V of The Divine Proportion by H.E. Huntley.
There is considerable debate over the validity of these claims. See the Perspectives section of this topic for more
details.

3Ibid, p. 25.
4One of the most famous and widely read books of all time.
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Figure 2.2: The Greek Parthenon

Thus the Golden Ratio is the precious jewel of geometry that Kepler spoke of at the outset of this
lesson.

How can we understand this definition? For a line to be cut in extreme and mean ratio we
must check that two ratios are equal. In his Elements (Book VI, Proposition 30), Euclid showed
that any line segment can be so divided using straightedge and compass - the allowable tools of
Greek geometry. In a slightly different spirit, although still geometric in nature, we can perform
the division using straightedge and compass resulting in the construction5 in Figure 2.3.

To see that we have succeeded, we check the equality of the specified ratios. If we apply the
Pythagorean theorem to the right triangle we see that

(
AB
)2

+

(
AB

2

)2

=

(
AG+

AB

2

)2

→
5
(
AB
)2

4
=

(
AG+

AB

2

)2

.

Taking square roots and solving, we see that AG =
(√

5−1
2

)
AB. It follws that6:

AB

AG
=

AB(√
5−1
2

)
AB

=
2√

5− 1
· AB
AB

=
2√

5− 1
· 1 +

√
5

1 +
√

5
=

2
(
1 +
√

5
)

4
=

1 +
√

5

2

and

5The perpendicular of length 1
2
AB is created first. Then the semicircle through B constructs point C. The

semicircle centered at A and through C constructs point G.
6This is one of the few places that your skills in rationalizing the denominator might serve you well.
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Figure 2.3: Geometric derivation of the Golden Ratio.

AG

GB
=

AG

AB −AG
=

(√
5−1
2

)
AB

Ab−
(√

5−1
2

)
AB

=

(√
5−1
2

)
AB(

3−
√
5

2

)
AB

=

(√
5− 1

2

)
·
(

2

3−
√

5

)
· AB
AB

=

√
5− 1

3−
√

5
=

√
5− 1

3−
√

5
· 3 +

√
5

3 +
√

5

=
2 + 2

√
5

4
=

1 +
√

5

2

as well.
Hence the ratios are equal, i.e. the line has been divided into mean and extreme ratio, and

both ratios are equal to the Golden Ratio!
This may seem like an obtuse definition. But remember, π is defined as a ratio as well - the

ratio of a circle’s circumference to its diameter. So just give φ a little bit of time.

2.3 The Golden Ratio Algebraically

Algebra as we know it is a fairly recent mathematical invention, beginning its modern development
in the latter part of the sixteenth century, and it was not available to the ancient Greeks who used
geometry as their language for mathematical analysis. However, we can find the Golden Ratio
easily using high school algebra.

Consider the line segment in Figure 2.4. We would like to find a value of x > 1 so that it is
divided into extreme and mean ratio.

1. In terms of 1 and x, find expressions for the two ratios that we need to compare to see if the
line is divided into extreme and mean ratio. Equate these ratios.
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Figure 2.4: Algebraic derivation of the Golden Ratio.

2. Use algebra to simplify the equation in Investigation 1 into an equation that does not involve
ratios. Then collect all nonzero terms to the left-hand side of the equation.

The function on the left-hand side of the equation in 2 is called a defining function, and you
can probably guess that it will define the Golden Ratio.

3. Carefully graph the defining function from Investigation 2 by hand, using a graphing calcu-
lator, spreadsheet, or computer algebra system.

4. Use your graph in Investigation 3 to determine how many solutions the equation in Investi-
gation 2 has.

5. Using repeated estimation, the ZOOM IN feature on your graphing calculator, numerical
estimation on a spreadsheet, or numerical solution via a computer algebra system, find the
solution x with x > 1 to the equation in Investigation 2. Surprised?

6. Using algebraic techniques from high school algebra, solve the equation in Investigation 2
exactly. Surprised?

2.4 Nested Radicals

7. Use your calculator or a spreasheet to determine the values of
√

1,
√

1 +
√

1, and

√
1 +

√
1 +
√

1
correct to several decimal places.

8. Could you continue taking repeated radicals as you did in Investigation 7? If not, explain
what the limitation is. If so, make a table of the values of the first ten repeated radicals
correct to several decimal places.

At first glance it might seem that the infinitely repeated radical

√√√√
1 +

√
1 +

√
1 +

√
1 +
√

1 + . . .

is too bizarre to be evaluated or even to make sense. However, people are quick to accept the
infinitely-repeated decimal 0.333 . . . as an exact value for the fraction 1

3 . So suspend judgment on
whether an infinitely-repeated radical, like the one above, makes any sense just long enough to. . .
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Figure 2.5: The United Nations Secretariat Building.

9. . . . hazard a guess of its numerical identity.

Let’s see if we can determine its numerical identity precisely.

10. Denote the unknown, infinitely-repeated radical by x =

√
1 +

√
1 +

√
1 +

√
1 +
√

1 + . . ..

In simplified form, what is x2?

11. Using 1 and x, express x2 as an algebraic expression without using any radicals.

12. Use your answer to Investigation 11 and earlier investigations to determine the value of x
exactly. Does your answer agree with your guess in Investigation 9? Explain.

2.5 Continued Fractions

The ancient Greeks thought that all numbers could be expressed as fractions. In fact, their
mathematical system was founded on this belief. When it was discovered that

√
2, the length of

the diagonal of a 1 by 1 square, could not be written as a fraction it was a tremendous setback
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to their sophisticated mathematical program. So great was the impact that the discoverer was,
according to legend, drowned.

Many attempts were made to repair this difficulty. One was to allow a more general form of
fractions called continued fractions. Some examples of continued fractions are

1

1 + 1
3

=
1
4
3

=
3

4
,

3

2− 1
2

=
3
3
2

= 2

and even Bombelli’s 7 remarkable

√
13 = 3 +

4

6 + 4
6+ 4

6+ 4
6+...

Those of you who find arithmetic with fractions frustrating can certainly be grateful to the
Babylonians for the decimal numbers that saved you from arithmetic with continued fractions.

13. Convert the fraction 1 + 1
1 into simple fraction, that is, a fraction of the form a

b where a, b
are integers.

14. Convert the continued fraction 1 + 1
1+ 1

1

into a simple fraction.

15. Convert the continued fraction 1 + 1
1+ 1

1+ 1
1

into a simple fraction.

16. Convert the continued fraction 1 + 1
1+ 1

1+ 1
1+ 1

1

into a simple fraction.

17. Write the continued fraction that would come next in the pattern illustrated by Investiga-
tion 13 - Investigation 16. Then convert it into a simple fraction.

18. Write the continued fraction that would come next in the pattern illustrated by Investiga-
tion 13 - Investigation 16. Then convert it into a simple fraction.

19. Write the continued fraction that would come next in the pattern illustrated by Investiga-
tion 13 - Investigation 16. Then convert it into a simple fraction.

20. The numerators and denominators in the simple fractions that answer Investigation 13 -
Investigation 19 form an important pattern. What pattern is this and how is it related to
other material we have considered?

21. Extend the pattern in Investigation 20 several more stages. Then make a table that gives
the decimal values of each of the fractions in Investigation 13 - Investigation 19 and your
extended data correct to several decimal places.

Of all infinite continued fractions, 1 + 1
1+ 1

1+ 1
1+ 1

1+...

seems the simplest.

22. Does the data in Investigation 21 suggest a value for 1 + 1
1+ 1

1+ 1
1+ 1

1+...

? Explain.

7Discovered in 1572. See e.g. [Bur, p. 279].
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Let’s see if we can determine the value of this infinite object precisely, as we did with the
infinite radical.

23. Denote the unknown continued fraction by x = 1+ 1
1+ 1

1+ 1
1+ 1

1+...

. Using only 1 and x, express

x as an algebraic expression containing only standard fractions.

24. Simplify your equation in Investigation 23 to find an equation involving x that is fraction-free.

25. Use your answer in Investigation 24 and earlier problems to determine the value of x exactly.
Does your answer agree with Investigation 22? Explain.

Figure 2.6: Nautilus shell cross section.

2.6 Powers of φ.

26. Your investigations here have an added benefit. Namely, they show that the ratio of successive
Fibonacci numbers, Fn+1

Fn
approaches an important limit as n→∞. What is this limit?

27. What does this limit tell you about the rate of growth of the Fibonacci numbers? Explain.

28. Make a table of values of the function bn = 1√
5

(
1+
√
5

2

)n
for n = 1, 2, 3, 4, . . . , 8.

29. How close are these values to whole numbers? Is this surprising? Explain.
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30. What is even more surprising about these numbers?

The function Bn = 1√
5

(
1+
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n
is called Binet’s formula. Its values are

always whole numbers – in fact, exactly those special whole numbers that you should have noticed
in Investigation 30.8

31. In the previous chapter you were asked how hard it would be to determine the fiftieth
Fibonacci number. Can you determine it now?

2.7 Golden Rectangles

A rectangle is called a Golden Rectangle if the ratio of longer side to the shorter side is the Golden
Ratio. The studies noted above suggest that it is the most pleasing of all possible rectangular
shapes, that the superstructure of the Parthenon forms a Golden Rectangle, and that the face of
Mona Lisa in the famous painting by Leonardo da Vinci is also in the ratio that forms a Golden
Rectangle.

In Figure 2.7 is a rectangle whose width is φ and whose height is 1. Two circular arcs, AF and
FG, and two perpendiculars, EF and GH, have been drawn.

Figure 2.7: First Stages of the Golden Spiral.

32. Is the rectangle ABCD a Golden Rectangle? Explain.

33. Is the smaller rectangle CDEF a Golden Rectangle? Prove your result.

34. Is the even smaller rectangle DEHG a Golden Rectangle? Prove your result.

35. Following the evident pattern, draw in another circular arc and another perpendicular. Is
the even smaller rectangle that results a Golden Rectangle as well? Prove your result.

8This seems like a miraculous formula and one might be tempted to think that it may be remarkably hard to
prove. Actually, it is straightforward to define the Fibonacci sequence using 2 × 2 matrix algebra. In this setting,

the eigenvalues of the transition matrix are 1√
5

(
1±
√
5

2

)
and the formula is an immediate result.
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36. Do you think you could repeat the process in Investigation 35 again and again? Is there any
limit? Explain.

37. Draw the sequence of circular arcs that would be created when one continues this process.
Is the resulting figure aesthetically pleasing?

The shape that you drew in Investigation 37 is the shape of nautilus shells (see figure Figure ??),
one of many natural organisms whose growth is controlled by the Golden Ratio9. The process that
you carried out in Investigation 36 shows that, in some sense, Golden Rectangles are fractals.10.

Figure 2.8: “Spirale” by Lino Tagliapietra, from the Corning Musuem of Glass. The artist says
he was “inspired by a nautilus shell”. Notice how reminiscent the opposing spirals are to the
Fibonacci spirals found in the previous chapter.

2.8 Star Pentagrams

The object in Figure 2.9 is called a star pentagram. It was the sacred symbol of the Pythagoreans,
a cult-like group of important historical import in mathematics.

38. Measure each of the line segments of different length in the star pentagram and make a chart
giving their lengths.

9See the Perspectives section at the end of this chapter for details and references. Also, compare with Investiga-
tion 27.

10Loosely speaking, a fractal is a geometric shape that reveals interesting fine structure, often self-similar in
nature, that recurs indefinitely as it is magnified. Fractals have become quite popular and both non-technical print
introductions and beautiful, dynamic Internet Java-scripts are widely available. (E.g. [Ste, Ch. 13], [FrPe], [Con],
[Cool].)
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Figure 2.9: Star Pentagram.

39. Are there any pairs of line segments in the star pentagram that form a golden ratio? If so,
list them.

40. Could you draw another star pentagram somewhere within the given star pentagram? If so,
provide an illustration. If not, explain why not.

41. Are there any limits to the number of star pentagrams that can be drawn within the original?
Explain.

2.9 Magical Rectangles

Figure 2.10: Magical rectangles.

The puzzle in this section is attributed to William Hooper (; - ) in 179411 by perhaps the
greatest mathematical puzzler of all time, Martin Gardner (Mathematics and science writer;
1914 - 2010). The puzzle is based on the related figures in Figure 2.10.

11See Mathematics, Magic and Mystery, Dover, 1956, p. 131.
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42. How are the dimensions of the pieces that comprise Shape A in Figure 2.10 related to material
we have recently been studying?

43. What do you notice about the dimensions of the pieces that comprise Shape B?

44. What are the areas of Shapes A and B?

45. Make a copy of Shapes A and B and cut out the pieces along the darkened lines. Show how
you can rearrange the pieces to form squares.

46. What are the areas of the squares?

47. Are your answers to problems Investigation 44 and Investigation 46 compatible? Is this
situation reasonable or even acceptable? Explain.

48. Can you construct other rectangles where the same behavior might take place? Explain.

Shape C in Figure 2.11 is related to Shapes A and B above.

Figure 2.11: Shape C: A golden, magical rectangle.

49. What is the area of Shape C (in terms of φ)?

50. Make a copy of Shape C and cut out the pieces. Show how you can rearrange them to form
a square.

51. What is the area of this square?

52. Are your answers to Investigation 49 and Investigation 51 compatible? Explain. (Hint: Use
your result from question Investigation 2 above to help you simplify if necessary.)

53. Is the behavior of the shapes constructed from the pieces from Shape C analogous to the
behavior of the corresponding shapes constructed from the pieces from Shapes A and B?
Explain whether this is surprising or not.
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Magical rectangles such as these have long been used as amusements. They are effective because
they strike a powerful blow at our basic trust of strong conservation laws - conservation of area in
this case. While this is an important and generally valid law - it comes with exceptions. In 1924
Stefan Banach (Polish mathematician; 1892 - 1945) and Alfred Tarski (Polish mathematician;
1902 - 1983) showed that it is theoretically possible to cut an orange into five pieces that can be
reassembled, with no stretching or distorting, into two oranges of the same size and same volume
as the original! This result strikingly demonstrates that area as we know it does not, theoretically,
satisfy a strict conservation law. The apparent paradox, known as the Banach-Tarski Theorem
as it is a deductively established result, is one of many unbelievable realities we must face when
dealing with the infinite. Several of these are explored in the Additional Investigations section.

2.10 Perspectives on the Golden Ratio

54. Claims of the ubiquity of the Golden Ratio in art, architecture, and music abound in print
sources as well as on the Internet. The validity of some of these instances of mathematical
folklore is established in documented sources. For example, Le Corbousier’s use of the Golden
Ratio in the design of the United Nations Secretariat Building (pictured in Figure 2.5) is
described in Connections: The Geometric Bridge Between Art and Science by Jay Kappraff,
World Scientific Publ. Co., 2001. However, the majority of these claims falter under detailed
analysis. George Markowsky challenges several of the better known claims in “Misconceptions
about the Golden Ratio”, The College Mathematics Journal , vol. 23, no. 1, January, 1992,
pp. 2 - 19. Find one specific example of a claim that the Golden Ratio occurs in a well-
known work of art, architecture, music, or other human creation. In a brief essay, describe
this occurrence and then turn a more skeptical eye to the issue in an effort to determine
whether there is real legitimacy to the claim that the Golden Ratio plays a real role in the
object under study.

55. In contrast to the debate about the occurrence of the Golden Ratio in the human world, the
Golden Ratio occurs with surprising frequency in the natural world. For example, the Golden
Ratio plays a critical role in the arrangement of leaves on the stems of many plants. (See e.g.
the section “Phyllotaxis” in Ch. XII of The Divine Proportion by H.E. Huntley, Dover, 1970
or The Power of Limits: Proportional Harmonies in Nature, Art and Architecture by Gyorgi
Doczi, Shambhala Publ., 1994.) The Internet abounds with claims of the occurrence of the
Golden Ratio in nature; there is even a Golden Mean Gauge! (www.goldenmeangauge.co.
uk/nature.html.) Find an instance where the Golden Ratio occurs in nature. Write a brief
essay (appropriate to share with fellow students) that illustrates the occurrence. You should
include appropriate diagrams, some explanation of what natural function gives rise to the
Golden Ratio, and reliable references.
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Chapter 3

Primes and Congruences

The positive integers stand there, a continual and inevitable challenge to the curiosity of every
healthy mind.

G.H. Hardy (English mathematician; 1877 - 1947)

It will be another million years, at least, before we understand the primes.

Paul Erdös (Hungarian mathematician; 1913 - 1996)

Were it not for your [Duke of Brunswick] unceasing benefits in support of my studies, I would
not have been able to devote myself totally to my passionate love, the study of mathematics.

C.F. Gauss (German mathematician; 1777 - 1855)

3.1 Primes

In this book’s Introduction we were reminded of the prime numbers, those positive integers whose
only divisors are 1 and the number itself. Any positive integer that is not prime is called com-
posite. Any number that evenly divides another positive integer is called a factor of the latter.

For example, the number 462 is composite since it is even. We can completely factor 462 into
its prime factorization 462 = 2×3×7×11. 2, 3, 7, and 11 are all factors of 462, as are combinations
of them like 6, 14, and 77. The prime factorization of 462 is called complete because none of
the factors can be broken down any further - all factors are prime. If we start with a composite
number, we are able to factor it, then factor the factors, and then factor these smaller factors, and
continue until all of the factors are primes.

Not only can every positive integer be completely factored into primes, but the representation
is unique up to the order in which the factors appear. This result is called the fundamental
theorem of arithmetic. It is truly of fundamental importance for it says is that the prime
numbers are, via multiplication, the building blocks of the positive integers. As elements serve as
the building blocks for all chemical compounds, the primes serve as the building blocks for the
positive integers. We should study the behavior of these building blocks, just as we study the
periodic table and how the elements behave in combination.

In discussing Goldbach’s conjecture it was noted that contemporary mathematicians do not
consider the number 1 to be prime. It is precisely here this matter can be given appropriate context.
An essential component of the fundamental theorem of arithmetic is the uniqueness of the factors.
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2 3 5 7 11 13 17 19
23 29 31 37 41 43 47 53
59 61 67 71 73 79 83 89
97 101 103 107 109 113 127 131

137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223
227 229 233 239 241 251 257 263
269 271 277 281 283 293 307 311
313 317 331 337 347 349 353 359
367 373 379 383 389 397

Table 3.1: The primes under 400.

462 has precisely four prime factors - 2, 3, 7, 11. If 1 were considered a prime number then it would
be a factor as well. And in fact, it could be a repeated factor: 462 = 1 × 1 × 1 × 2 × 3 × 7 × 11.
This opens a flood-gate of complications. It is this then that lead to the decision that we should
not consider 1 to be a prime number.

Mathematicians have long tried to find patterns among the primes, and despite some success
and fascinating stories like that of “The Twins” (see Section 3.5 below), they have had little
success. Because large primes are the combinations that unlock encryption schemes, they are an
invaluable commodity. Thus, the search for patterns among the primes occupies a great deal of
mathematics’ contemporary work - as we shall see in the Chapter 4.

3.2 Twin Primes and Other Arithmetic Progressions of Primes

The numbers 5 and 7 are called twin primes because they come in pairs, as close as two odd
primes can be. 11 and 13, 17 and 19, and 29 and 31 are other twin prime pairs. As we shall see
in Chapter 4, mathematicians have long known there are infinitely many primes, they have been
unable to determine whether there are infinitely many twin prime pairs or not. Most believe there
infinitely many - this belief is called the twin prime conjecture - but this remains a major open
question in number theory. Solve this mystery and you will be a mathematical celebrity.

1. Find all of the twin primes under 100.

2. Find all of the twin primes between 100 and 200.

3. Find all of the twin primes between 200 and 300.

4. Find all of the twin primes between 300 and 400.

5. What do you notice about the number of twin primes in each of these ranges?

6. Why do you think this might be happening?

7. Find a progression of three twin primes; that is, a sequence of three primes each that is a
twin prime to the one that follows it.
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8. Prove that no other progression of three twin primes can exist.

9. Can you find a progression of twin primes longer than three terms? If not, why? If so, how
large of a progression can you find?

Cousin primes are a pair of prime numbers that are four away from each other. Sexy primes
are a pair of primes that are six away from each other.

10. Find several pairs of cousin primes.

11. Can you find a progression of three cousin primes? If one progression exists, are there others?
(Prove your answer.)

12. Can you find a progression of cousin primes that is longer than three terms? If not, why? If
so, how long of a progression can you find?

13. Find several pairs of sexy primes.

14. Can you find a progression of three sexy primes? If one progression exists, are there others?
(Prove your answer.)

15. Can you find a progression of sexy primes that is longer than three terms? If not, why? If
so, how long of a progression can you find?

16. Make up your own name for a pair primes that are eight apart. Explain your name.

17. Find several pairs of eight-apart primes.

18. Can you find a progression of three eight-apart primes? If one progression exists, are their
others? (Prove your result.)

19. Can you find a progression of eight-apart primes that is longer than three terms? If not,
why? If so, how long of a progression can you find?

20. How long of a progression of 30-apart primes can you find?

In 1910, Edward B. Escott (; - ) discovered that all of the terms in the progression

199, 409, 619, . . . , 1669

were prime.

21. How far apart are the numbers on Escott’s list?

22. How many numbers are on Escott’s list?

23. Looking back at your examples, which “apart numbers” generate fairly long progressions of
primes?

24. What properties do these useful “apart numbers” share? How are these useful “apart num-
bers” related to each other?
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From 1910 - 1963, mathematicians were not able to find a longer run of consecutive primes
in arithmetic progression than Escott. At the time of this writing (2014) the longest run of
consecutive primes in arithmetic progression that is known is 26.1 On the basis of this evidence,
it is stunning that one can prove that for any finite length there must exist a run of consecutive
primes in arithmetic progression of at least this length. In other words, despite being stuck at
26, we know that there is an arithmetic progression of one billion primes in a row! This startling
result was proven in 2004 by Ben Green (British mathematician; 1977 - ) and Terence Tao
(Australian mathematician; 1975 - ).2 At age 31, Tao won mathematics’ highest honor - the Fields
medal - in part for his work on this problem.

The Green/Tao theorem , as it is called, is an existence theorem which proves existence
but does not tell you how to actually construct the desired objects. It gives us no clue how to find
these elusive arithmetic progressions of primes that can exceed any finite length. The Green/Tao
theorem had many additional consequences, many outlined in a paper by a premier number theorist
named Andrew Granville (British mathematician; 1962 - ).3 Here you will investigate one such
prime pattern.

The array of numbers
3 7
19 23

is called a 2 × 2 generalized arithmetic progression of primes (GAP) because all of the
numbers are prime and along each row the numbers are 4 apart and along each column the
numbers are 16 apart.

25. Find another 2× 2 generalized arithmetic progression of primes.

26. There is 3× 3 generalized arithmetic progression of primes whose smallest member is 29 and
whose largest member is 113. Find the other members of this GAP.

The Green/Tao theorem insures that larger and larger such GAPs exist, including a Rubik’s
cube like 3×3×3 GAP. When Westfield State College undergraduate students Michael Guenette
(American student; - ) and Jeffrey P. Vanasse (American student; - ) began reading Granville’s
paper in 2008 with the author of this book they were stunned to learn that nobody alive had
ever found an example of the lowly 3 × 3 × 3 GAP despite the fact that we knew that GAPs
of any finite size must exist. They repeatedly collected ideas to search for it. Each time they
described their ideas to me I dissuaded them, explaining how the number of cases to check by
searching exhaustively would overwhelm the potential of the computer. Each week they came in
with improved ideas. Eventually I acquiesced. With the coding help of another of their teachers,
Marcus Jaiclin (American mathematician; - ), in two weeks the students had found it, the first
known example of the 3×3×3 GAP! The minimal example is shown in Figure 3.1. Their discovery
was widely reported.4

So there is great progress in finding long runs of arithmetic progressions of primes. But what
about the more “basic” question of the total number of twin primes or cousin primes or sexy

1Search “Primes in arithmetic progression records” to learn if this record has been extended since this writing.
2Green, Ben and Tao, Terence (2008), ”The primes contain arbitrarily long arithmetic progressions”, Annals of

Mathematics 167 (2): 481?547.
3“Prime Number Patterns”, The American Mathematical Monthly, vol. 115, No. 4, April 2008, pgs. 279-296.
4See e.g. http://www.sciencedaily.com/releases/2008/11/081117220257.htm and see http://www.westfield.

ma.edu/math/GAP.page.html for more information.
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Figure 3.1: 3× 3× 3 GAP by Guenette, Vanasse, Fleron and Jaiclin.

primes? We just have no idea how many of any of these primes there are. And, until recently,
most would admit that there was little hope for imminent progress.

So it was with great excitement when Yitang Zhang (Chinese mathematician; 1955 - ) an-
nounced that he had proven a bounded gaps theorem for primes. His result is that if you put
all of the twin primes together with all of the cousin primes together with all of the sexy primes
together with all of the eight apart primes you just named and keep collecting all of the prime pairs
that are separated by larger and larger gaps, when you reach gaps of size 7,000,000 the resulting
collection of primes will be infinite. What this means is that at least one of the families of primes
(i.e. twins, cousins, sexies,. . . ) must be infinite.

A group of mathematicians, lead by Tao, are hard at work to lower Zhang’s bound of 7, 000, 000.
At the time of this writing (2014) the Polymath8 project had reduced the bounded gaps’ size needed
to insure infinitude from 7, 000, 000 to 246.

After many decades with little progress to speak of, the twin prime conjecture may be teetering.

Zhang’s result is a powerful, surprising result. Zhang was not widely known before his work
was announced. As a teen he was exiled and performed hard labor instead of the mathematics he
wished to study. He eventually completed degrees in mathematics and immigrated to the United
States. Struggling to find an academic position, the Ph.D. mathematician worked for a time at
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a Subway restaurant.5 At the time of his discovery his official position was as a Lecturer at the
University of New Hampshire - a low rank position at the institution not known for high-profile
research breakthroughs. He was subsequently promoted to Full Professor and won many awards,
including a MacArthur Genius Award with a prize of $625,000.

Earlier we promised that number theory was accessible, here you see another example of the
breadth of the people who have contributed to number theory’s wonderful contemporary growth.

3.3 Fermat Primes

The French monk Father Marin Mersenne (French theologian, philosopher and mathematician;
1588 - 1648) was an important facilitator of mathematical communication. He helped mathematics
successfully escape from the Dark Ages that had stagnated intellectual life. Pierre de Fermat
(French lawyer and mathematician ; 1601 - 1665), whose monumental contributions to number
theory are explored throughout most of the forthcoming chapters, frequently communicated with
Mersenne. In one letter to Mersenne Fermat announced he had “found that numbers of the form
22
n

+ 1 are always prime numbers and have long since signified to the analysts the truth of this
theorem.”

In honor of Fermat, we call these numbers Fermat numbers and denote the general Fermat
number by Fn = 22

n

+ 1.

As Fermat observed,

F0 = 22
0

+ 1 = 3,

F1 = 22
1

+ 1 = 5, and,

F2 = 22
2

+ 1 = 17

are all prime.

27. Determine F3 by hand.

28. From Table 3.1 we can ascertain that F3 is prime. Check this using only a basic calculator.
Explain precisely how you have proven that this number is prime.

29. Using only a basic calculator, determine F4.

30. Using a basic calculator, how long do you think it would take you to determine whether F4

was prime? Explain.

31. To determine whether the fifth Fermat number, F5 = 22
5

+ 1 = 4, 294, 967, 297, is prime,
theoretically what must one do?

32. In light of Fermat’s virtually unblemished record, would it seem wise to challenge the pri-
mality of the fifth Fermat number in an era when computers and electronic calculators were
not available?

5See http://news.cnet.com/8301-17938_105-57618696-1/yitang-zhang-a-prime-number-proof-and-a-world-of-persistence/.
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As discussed in Chapter 5, Euler was the first to fruitfully extend any of Fermat’s significant
work in number theory. That is the case here as well.

Instead of using brute force to try to find factors of F5, Euler ingeniously eliminated the majority
of potential factors by analyzing properties potentially successful divisors would be required to
have. In particular, he showed that if F5 was not prime it must have a prime factor of the form
64k + 1 where k is a positive integer.

33. Compute the numbers 64k + 1 for k = 1, 2, . . . , 10.

34. Which of the ten numbers in your answer to Investigation 33 are prime?

35. Check to see if any of the primes from your answer to Investigation 34 divide F5. What does
this tell you about F5?

When a Fermat number is prime we refer to it as a Fermat prime.

36. Would you be surprised to learn that mathematicians have shown that the next twenty six
Fermat numbers, F6 = 22

6

+ 1, . . . , F32 = 22
32

+ 1, are all composite? They are. How badly
mistaken was Fermat in his conjecture about Fermat primes?

3.4 Mersenne Primes

In addition to his correspondence with Fermat, Mersenne made his own important contributions
in the search for primes. He suggested that we consider numbers of the form

Mn = 2n − 1,

numbers which have since been called Mersenne numbers in his honor. The first four Mersenne
numbers are

M1 = 21 − 1 = 1,

M2 = 22 − 1 = 3,

M3 = 23 − 1 = 7, and,

M4 = 24 − 1 = 15.

When Mersenne numbers are prime, like M2 = 3 and M3 = 7, they are called Mersenne primes.

37. Find the next six Mersenne numbers, M5 −M10.

38. Which of these Mersenne numbers are prime?

39. Based on the evidence you have thus far, can you make a conjecture - based on specific
conditions on n - about when a Mersenne number Mn i) is a prime, and, ii) is not a prime?
Explain.

40. What does your conjecture in Investigation 39 tell you about Mersenne numbers Mn when
n is even and greater than 2? Explain.
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41. Compute each of the products (22 + 1) · (22 − 1), (23 + 1) · (23 − 1), and (24 + 1) · (24 − 1).
How do these products relate to Mersenne numbers?

42. Extend your observations in Investigation 41 to prove your conjecture in Investigation 40.

43. The thirteenth, seventeenth, and nineteenth Mersenne numbers (M13 = 213−1 = 8191,M17 =
217 − 1 = 131, 071, and M19 = 219 − 1 = 524, 287, respectively) are all prime numbers. Do
these facts and your proof in Investigation 42 bolster your faith in the validity of your
conjecture in Investigation 39 about the Mersenne numbers that are prime?

44. Is the eleventh Mersenne number, M11 = 211 − 1 = 2047 prime? What does this tell you
about your conjecture in Investigation 39?

3.4.1 Modern Analysis of Mersenne Primes before Computers

Mersenne made a detailed study of Mersenne numbers. He claimed to know exactly which of the
first 257 Mersenne numbers were prime and which were not. His work did not include proofs of
these results. So mathematicians continued to investigate Mersenne’s claims. In 1876 Édourd
Lucas (French mathematician; 1842 - 1891) proved that

M127 = 170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 727

was prime, as Mersenne claimed. This was the largest prime known to humankind for over 75
years!

But Mersenne made a few mistakes. One of these was with M67 which Mersenne claimed was
prime. The story surrounding this number is rich:

Édouard Lucas worked a test whereby he was able to prove that the Mersenne number
M67 was composite; but he could not produce the actual factors. At the October 1903
meeting of the American Mathematical Society, the American mathematician Frank
Nelson Cole had a paper on the program with the somewhat unassuming title “On the
Factorization of Large Numbers.” When called upon to speak, Cole walked to a [chalk]
board and, saying nothing, proceeded to raise the integer 2 to the 67th power; then he
carefully subtracted 1 from the resulting number and let the figure stand. Without a
word he moved to a clean part of the board and multiplied, longhand, the product

193, 707, 721× 761, 838, 257, 287.

The two calculations agreed. The story goes that, for the first and only time on record,
this venerable body rose to give the presenter of a paper a standing ovation. Cole took
his seat without having uttered a word, and no one bothered to ask him a question.
(Later, he confided to a friend that it took him 20 years of Sunday afternoons to find
the factors of M67.) [Bur; p. 206]

45. About how many digits does M67 have?

46. How long do you think it might take you to calculate M67, from its definition, by hand?

47. Describe the mathematics Cole was likely doing in these 20 years of Sunday afternoons to
uncover this secret.

48. Do you think that Cole’s time in determining a factorization of M67 was well spent? Explain.
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3.4.2 Modern Analysis of Mersenne Primes with Computers

With the advent of desk calculators and early computers, by 1947 the primality of all 257 numbers
on Mersenne’s list were determined. Mersenne made only five mistakes out of 257 numbers - a
remarkable accomplishment since these numbers grow so fast, as we have already seen.

The growth in the size of the largest know prime has been remarkable over the last 70 years.
The term “exponential growth” is often used in everyday speech as a generic way to describe large
rates of growth. This is inappropriate as the term has a precise and important meaning. Its use in
this context is appropriate. The number of digits in the largest known primes has increased by a
factor of 10 about every twelve years since 1945.6 Lucas’ prime, the enormous number above, has
only 39 digits. In 1961, the record was a 1, 332 digit number. In 1979, the record 13, 395 digits.
In 1992, the record 227, 832 digits. In 1999, the record 2, 098, 960 digits.

In fact, since 1996 all of the largest known prime numbers have been Mersenne primes and they
have been discovered by volunteers of the Great Internet Mersenne Prime Search (GIMPS). As part
of GIMPS, volunteers run sophisticated computer analysis on pieces of data while their computers
are idle. Called distributed computing , volunteers essentially loan their idle, unused computer
time to a scientific effort. If you would like to be part of the GIMPS search, and maybe become
famous, you can download software at www.mersenne.org. This software runs in background in
the lowest priority on your computer, using your computer’s capabilities when you are not actively
using them.

Discovered on December 5, 2001, by 20 year-old Michael Cameron (; - ) running GIMPS
software on his PC, was the primality of the Mersenne number 213466917 − 1, an almost five-fold
increase in the number of digits of the largest known prime from just three years earlier. There
have been seven new prime number records since then, three by Curtis Cooper (; - ) a professor
of mathematics and computer science at the University of Central Missouri who keeps GIMPS
running on all of his campus’ computers. His discoveries include the current record:

M57,885,161 = 257,885,161 − 1

which is a 17, 425, 170 digit number. The initial digits of this number are:

581, 887, 266, 232, 246, 442, 175, 100, 212, 113, 232, 368, 636, 370, 852, 325, 421, 589, 325 . . .

and the final digits are:

937, 745, 410, 942, 833, 323, 095, 203, 705, 645, 658, 725, 746, 141, 988, 071, 724, 285, 951.

In between these 104 digits are 17, 425, 66 digits that have been removed.

49. If this page were filled with digits in this way, 35 lines to a page, how many digits could fit
on the page?

50. How many pages would it take to write out the digits to Cooper’s Mersenne prime in the
way just described? Explain.

51. Does this help you appreciate how large this prime is and how remarkable it is that we know
deductively that this number is prime? Explain.

6See http://primes.utm.edu/notes/by_year.html for the largest known primes by year and an interesting dis-
cussion about the use of linear regression to quantify the growth.
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3.5 The Twins

A moving story of arithmetical insight is told by Oliver Sacks (British-American neurologist and
author; 1933 - ) in the chapter “The Twins” from The Man Who Mistook His Wife for a Hat 7

This story involves two autistic twins who had extraordinary abilities to recognize numbers and
number relationships in many everyday things around them. For example:

A box of matches on their table fell, and discharged its contents on the floor: ”111,”
they both cried simultaneously; and then, in a murmur, John said ”37”. Michael
repeated this, John said it a third time and stopped. I counted the matches – it took
some time – and there were 111.

52. What does 37 have to do with 111?

53. Why did the twins repeat 37 as they did?

54. What is the mathematical importance of 37 to 111?

This storyline was adapted as one of the pivotal scenes in the movie “Rain Man” when the character
Charlie Babbitt (played by Tom Cruise (American actor; 1962 - )) begins to realize the remarkable
power of brother Raymond, an autistic savant (played by Dustin Hoffman (1937; - )). In this
adapted scene8 Raymond wants toothpicks to eat his pancakes. When the waitress accidentally
spills the box of toothpicks on the floor, Raymond says “82, 82, 82.” Charlie tells him he’s “not
even close.” Raymond replies “246 total.” The waitress says that there are 250 in the box and
then realizes there are exactly 4 left in the box.

In real life, Sacks spent a long time sitting in the company of the twins to gain their trust. After
a great many visits the twins became comfortable and one day began speaking in numbers. Sacks
secretly recorded these numbers and later determined they were all eight digit prime numbers.
Subsequently he snuck a book of primes into their “meetings”. One day he participated in the
conversation. After a period of shock, the twins welcomed him into the prime conversation. When
Sacks later contributed a nine digit prime, the twins were shocked. But they responded with nine
digit primes of their own. And then ten digit primes. And then numbers with more and more digits.
Sacks assumed they must be primes, but was uncertain as his book did not include numbers this
large and this was well before handheld technology put this information at our immediate disposal.

What is remarkable is that there is no know algorithm for generating primes and no efficient
way to determine whether a given number is prime. These problems are holy grails to number
theorists. As the great Euler said:

Mathematicians have tried in vain to this day to discover some order in the sequence
of prime numbers, and we have reason to believe that it is a mystery into which the
human mind will never penetrate.

Yet, these two twins, whose arithmetic abilities were essentially nonexistent, somehow knew how
to communicate with the prime numbers. Is it possible that the secret of the primes was known
to these twins? Perhaps. But if it was it has been lost. The twins were separated to help prevent
their “unhealthy communication together... in an appropriate, socially acceptable way.” They
subsequently seemed to lose their special abilities with primes.

7HarperPerrenial edition, 1990, pp. 195 - 213.
8Which can be found on YouTube by searching “Autism Tootpick Count”.
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3.6 Congruences: aka Clock Arithmetic

Fermat, then Euler, Joseph-Louis Lagrange ( Italian mathematician and astronomer; 1736 -
1813), and Adrien-Marie Legendre (French mathematician; 1752 - 1833), found clever indi-
rect methods to work with gigantic numbers of the sort considered above. This enabled them
to make the most significant advances in number theory during the sixteen and seventeenth cen-
turies. But it was the brilliant Gauss who unified their methods and results. His masterpiece,
Disquisitiones Arithmeticae, was written at the age of twenty and yet it ”not only began the mod-
ern theory of numbers but determined the directions of work in the subject up to the present
time.”9

In this work Gauss introduces the theory of congruences which you might already know as
clock or modular arithmetic. Simply enough, 7 hours after 11 o’clock will be 6 o’clock. We
write this as

7 + 11 ≡ 6 (mod 12)

which we read as “7 plus 11 is congruent to 6 mod 12.” The military uses 24-hour clocks so we
would have

7 + 11 ≡ 18 (mod 24).

However, 7 hours after 23 hundred hours (i.e., 11 o’clock p.m.) is 6 hundred hours:

7 + 23 ≡ 6 (mod 24).

Gauss noticed that we can define congruences like this for any “clock.” We say that 7 + 23 ≡ 6
(mod 24) because 7 + 23 = 30 and the remainder when 30 is divided by 24 is 6. So we will say a is
congruent to r mod m and write a ≡ r (mod m) whenever a leaves remainder r when divided by
m. The remainder r is called the residue and the base m of the ”clock” is called the modulus.
In his Disquisitiones, Gauss showed that congruences form arithmetical systems where we can not
only add numbers, but subtract, multiply and exponentiate numbers, as well.

There is a slight inconsistency with the mathematical definition and the description using
clocks. Namely, using a clock we would say 5 + 7 ≡ 12 (mod 12) since 5 hours after 7 o’clock
is 12 o’clock. Indeed, the numbers on a standard clock are 1 − 12. But, when we consider this
congruence with remainders we have 5+7 ≡ 0 (mod 12) since the remainder when 5+7 is divided
by 12 is 0. For mathematicians mod 12 arithmetic uses the numbers 0− 11 instead of 1− 12 with
0 taking the place of 12. While the mathematicians approach is best for a deep study of modular
arithmetic, for our purposes here either convention will be appropriate.

3.7 Application of Congruences

In one of his remarkable insights, Euler ”noticed” that the Mersenne number M83 = 28
3 − 1 =

9, 671, 406, 556, 917, 033, 397, 649, 408 was not prime but rather had 167 as a factor. ”Noticing” this
is remarkable, it seems to be an unpleasant task to check that 167 divides this gigantic number.
Let’s see how we can use congruences to do this. 10

9Morris Kline, from Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972, p.
813.

10Adapted from The History of Mathematics by David M. Burton.
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If 167 is a factor of 283 − 1, then this means 167 divides 283 − 1 evenly. Another way to say
this is there is no remainder, which means 283 − 1 ≡ 0 (mod 167) So how can we compute powers
of 2 mod 167? Well,

28 = 256 so 28 ≡ 256 (mod 167) ≡ 89 (mod 167).

Since (28)2 = 216, we have

216 ≡ (89 (mod 167))
2 ≡ 892(mod167) ≡ 7921(mod167) ≡ 72(mod167).

Similarly,
232 ≡ 722 (mod 167) ≡ 5184 (mod 167) ≡ 7 (mod 167), and

264 ≡ 72 (mod 167) ≡ 49 (mod 167).

So then
283 ≡

(
264 (mod 167)

)
×
(
216 (mod 167)

)
×
(
23 (mod 167)

)
≡ (49× 72× 8) (mod 167) ≡ 28224 (mod 167) ≡ 1 (mod 167).

Hence, 283 − 1 ≡ (1− 1) (mod 167) ≡ 0 (mod 167).
This is a very powerful method indeed. In fact, without methods like these, the computations

that are necessary to encrypt messages, with algorithms like the RSA algorithm (considered in
Section 3.10, would not be feasible.

3.8 Powers and Congruences

55. Reduce each of the congruences below to a number smaller than the modulus, 3:

12 ≡ (mod 3)

22 ≡ (mod 3)

32 ≡ (mod 3)

42 ≡ (mod 3)

52 ≡ (mod 3)

62 ≡ (mod 3)

72 ≡ (mod 3)

56. Do you see a pattern in your answers to Investigation 55? If so, do you think it will continue
indefinitely? Explain why.

57. Reduce each of the congruences below to a number smaller than the modulus, 4:

13 ≡ (mod 4)

23 ≡ (mod 4)

33 ≡ (mod 4)
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43 ≡ (mod 4)

53 ≡ (mod 4)

63 ≡ (mod 4)

73 ≡ (mod 4)

83 ≡ (mod 4)

93 ≡ (mod 4)

58. Do you see a pattern in your answers to Investigation 57? If so, do you think it will continue
indefinitely? Explain why.

59. Reduce each of the congruences below to a number smaller than the modulus, 5:

14 ≡ (mod 5)

24 ≡ (mod 5)

34 ≡ (mod 5)

44 ≡ (mod 5)

54 ≡ (mod 5)

64 ≡ (mod 5)

74 ≡ (mod 5)

84 ≡ (mod 5)

94 ≡ (mod 5)

60. Do you see a pattern in your answers to Investigation 59? If so, do you think it will continue
indefinitely? Explain why.

61. Reduce each of the congruences below to a number smaller than the modulus, 6:

15 ≡ (mod 6)

25 ≡ (mod 6)

35 ≡ (mod 6)

45 ≡ (mod 6)

55 ≡ (mod 6)

65 ≡ (mod 6)

75 ≡ (mod 6)

85 ≡ (mod 6)

95 ≡ (mod 6)
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62. Do you see a pattern in your answers to Investigation 61? If so, do you think it will continue
indefinitely? Explain why.

63. Reduce each of the congruences below to a number smaller than the modulus, 7:

16 ≡ (mod 7)

26 ≡ (mod 7)

36 ≡ (mod 7)

46 ≡ (mod 7)

56 ≡ (mod 7)

66 ≡ (mod 7)

76 ≡ (mod 7)

86 ≡ (mod 7)

96 ≡ (mod 7)

64. Do you see a pattern in your answers to Investigation 63? If so, do you think it will continue
indefinitely? Explain why.

65. You should see some patterns emerging that tie together some of the of the groups of con-
gruence computations. Make one or more conjectures describing congruences of the form

an−1 mod n,

based on properties of the numbers a and n.

3.9 The Chinese Remainder Theorem - Mathematical Magic

A popular online trick is “Calculating Your Age by Chocolate.” The trick proceeds via the following
steps:

• Choose how many times a week you would like to eat chocolate - any positive whole number.

• Multiply this number by 2.

• Add 5 to the product.

• Multiply the sum by 50.

• Add the current year to the product.

• From this sum subtract 250 if you have already had a birthday this year, otherwise subtract
251.

• From this difference subtract the year of your birth.
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66. Pick a number of times a week you want to eat chocolate and perform the steps in the trick.
What do you notice about the answer?

67. Repeat the trick with the different starting number.

68. Determine how the trick works algebraically by denoting the starting number by the variable
x and performing all of the steps in the trick. Describe how the trick works and any potential
limitations on it.

Number tricks based on simple algebraic identities like this have been performed for hundreds
of years.

A much more substantial trick based on congruences was described by Fibonacci in his Liber
Abbaci in 1202. Instead of calling it a “trick” he referred to it as “a pleasant game.” But the
intent was clear, a method through which “you can know the number said to him in private.”11

The basis for this trick is the Chinese remainder theorem whose earliest know statement appears
in the work of Sun Tzu (Chinese mathematician; circa 300 - circa 500).

69. Think of any number between 1 and 105. Call your mystery number x.

70. What is x congruent to mod 3? Label your answer as c1, so we have x ≡ c1 (mod 3).

71. What is x congruent to mod 5? Label your answer as c2, so we have x ≡ c2 (mod 5).

72. What is x congruent to mod 7? Label your answer as c3, so we have x ≡ c3 (mod 7).

73. What do the numbers 3, 5, and 7 have to do with 105?

74. Evaluate the expression m = c1 × 35× 2 + c2 × 21× 1 + c3 × 15× 1.

75. Reduce m mod 105. Surprised?

76. Do you think that this trick will work for any number between 1 and 105? Explain.

77. Now think of any number between 1 and 231. Call your mystery number x.

78. What is x congruent to mod 3? Label your answer as c1, so we have x ≡ c1 (mod 3).

79. What is x congruent to mod 7? Label your answer as c2, so we havex ≡ c2 (mod 7).

80. What is x congruent to mod 11? Label your answer as c3, so we have x ≡ c3 (mod 11).

81. Evaluate the expression m = c1 × 77× 2 + c2 × 33× 3 + c3 × 21× 10 .

82. In the expression for m what do you think gave rise to the numbers 77, 33, and 21? Explain.12

83. Reduce m mod 231. Surprised?

11Quoted on p. 189-90 of The Mathematical Experience by Philip J. Davis and Reuben Hersh.
12 The numbers 2, 3, and 10 in this expression are a bit more mysterious. They were chosen so that 77 × 2 ≡ 1

(mod 3), 33 × 3 ≡ 1 (mod 7), etc. With this in mind, one can now generalize this trick to include any number of
moduli. In other words, you could have the dupe choose any number between 1 and 255, 255 = 3×5×7×11×13×17
and then ask for the six necessary moduli.
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3.10 Secret Codes, Ciphers and Cryptography

Few persons can be made to believe that it is not quite an easy thing to invent a method
of secret writing that shall baffle investigation. Yet it may be roundly asserted that human
ingenuity cannot concoct a cipher which human ingenuity cannot resolve.13

Edgar Allan Poe (American author and poet; 1809 - 1849)

The long history of secret codes was mentioned in the introduction. We have now mathe-
matically arrived at a locale where we can begin to view the mathematics that underlies modern
encryption schemes.

In the previous section you saw how the Chinese remainder theorem can be used to recover an
unknown number from knowledge of specific residues. This gives rise to a cipher, an algorithm for
encrypting secret information. If you wanted to share secret numbers with a friend, all you would
need to do is secretly agree beforehand on the the key - a large number which is the product of
unique primes. To share a secret number you could send your friend a list of the residues and
they could reconstruct the secret number. Even if your list of residues were intercepted by a foe,
it would be hard for your secret number to be reconstructed without the identity of the key.

This is a good first example see how a mathematical cipher works. There are practical lim-
itations to this particular method. And there is the enormous limitation that has plagued all
ciphers throughout history - the sender and receiver must both have prior knowledge of the key.
In any arena where the goal is to keep information secret, how can keys be effectively shared in
secret? It was an enormous breakthrough in the 1970’s when a host of computer scientists and
mathematicians developed methods of public key cryptography where there are two distinct
keys, a private key which is known by the receiver and a public key which is revealed to the
world and allows anyone to encrypt messages which can only be decrypted by the holder of the
private key.

One of the most important such public key crypotsystems is the RSA algorithm named after
Ron Rivest (American computer scientist; 1947 - ), Adi Shamir (Israeli computer scientist;
1952 - ), and Leonard Adleman (American computer scientist and biologist; 1945 - ). As you
shall see, the underlying mechanism that drives this method is Fermat’s little theorem - the
result you found in Investigation 65.

To employ the RSA algorithm the Receiver must build the keys. This is done as follows:

• Two very large primes p and q are chosen.

• The product n = p · q is computed. The number n is one part of the public key.

• An exponent e is chosen so that 1 < e < (p− 1)(q− 1) and e shares no common factors with
(p− 1)(q − 1). The number e is the other part of the public key.

• The equation k · e ≡ 1 (mod (p− 1)(q− 1)) is solved for k. The number k is the private key.

• The public key (n, e) is made public for all to see.

With the keys identified, but before we describe the workings of the cipher, it is important to
understand the essential security matter - factoring large numbers into primes. The primes p and

13Quoted in ”Cryptology: From Caesar Ciphers to Public-key Cryptosystems,” by D. Luciano and G. Prichett,
in The College Mathematics Journal , Vol. 18, No. 1, Jan. 1987, pp. 2-17.
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q are generally chosen to have about 200 digits and so n has about 400 digits. This number is part
of the public key, made public for all of the world to see!

84. Suppose a foe with knowledge of the public key was able to factor n into its prime factors.
Describe why this would enable the foe to determine the private key and break any message
within this particular RSA scheme.

This is a prime example of why our understanding of primes is so important. And why the
incredible abilities of The Twins might have helped uncover one of the great mysteries in all of
mathematics.

85. A Sender needs to translate their message text into a number so it can be encrypted before
it is sent. After decryption the Receiver will need to translate the number which is output
by this algorithm back into the message text. Determine a way that you could represent any
alphabetic, text based message as a single number in such a way that the message can be
easily reconstructed from the number.

To send a secret message a Sender simply converts the text message into a single number, as
in Investigation 85. Denote this number by m for “message.” The Sender then computes:

c ≡ me (mod n).

The encrypted ciphertext, denoted by c, can then be sent as a public message, as it can only be
decrypted by the Receiver who is the only person in possession of the private key.

The Receiver decrypts the message by computing:

ck mod n.

But why does this work? Why does this recover the secret message m?

86. Since k is defined to satisfy k · e ≡ 1 (mod (p − 1)(q − 1)), explain why we can write
k · e− 1 = j(p− 1)(q − 1) for some integer j.

87. Explain why the number computed by the Receiver, ck mod n, is equal to

me·k mod n.

88. Explain why me·k = me·k−1 ·m.

We are now ready to invoke Fermat’s little theorem, which will be done both modp and mod q
and then combined.

89. Explain why

me·k =
(
mp−1)j(q−1) ·m.

90. Modulo p this means

me·k ≡
(
mp−1)j(q−1) ·m (mod p).

Use Fermat’s little theorem to explain why this expression on the right is congruent to m.
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91. Explain why me·k −m is a multiple of p.

92. Explain why me·k −m must also be a multiple of q.

93. Since me·k −m is a multiple of both of the different primes p and q, explain why it must be
a multiple of the product p · q.

94. Determine the number me·k mod n and explain why this means that the Receiver has recov-
ered the secret message.

So this is some slightly technical algebra. But consider the enormity of what you have just
shown. You have just rediscovered the inner workings a special application of a 300 year-old,
theoretical result about whole numbers - one that has revolutionized secrecy and that is funda-
mental to the information age. Unlike the cute application of algebra in “chocolate math,” in RSA
we have an algorithm that, together with related advances in public key encryption methods, is
fundamental to all of e-commerce, computer security, weaponry codes, and secure communication.
The linchpin to all of this? As yet we have found no efficient methods for factoring large numbers
or finding the pattern to the primes - the key builders in encryption can stay far ahead of the
numerical lock pickers.

For most of the history of cryptography, Poe’s declaration that opened this section seemed
valid. But human ingenuity combined with powerful mathematics has managed to create ciphers
which cannot be resolved.
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3.11 Connections

3.11.1 History: Alan Turing and World War II Codebreaking

Alan Turing (British mathematician; 1912 - 1954) was one the twentieth century’s most impor-
tant mathematicians. He did critical work in logic and in the development of modern computer
science. Additionally, he played a critical role in the intelligence efforts during the Second World
War. In fact, his efforts prompted the mathematician Peter Hilton to remark:

I.J. Good, a wartime colleague and friend, has aptly remarked that it is fortunate that
the authorities did not know during the war that [Alan] Turing was a homosexual;
otherwise, the Allies might have lost the war.14

Figure 3.2: Alan Turing.

Indeed, when his homosexuality was discovered after the war he was subjected to house arrest
and a variety of medical “treatments.” Soon afterward this highly decorated war hero committed
suicide.

Find out more about the life and mathematical accomplishments of Alan Turing. Write a brief,
two- to three-page biographical essay, addressed to fellow students, that describes your findings.

3.11.2 History: Polish Mathematicians and World War II Codebreaking

Alan Turing’s contributions to mathematics visionary and greatly ahead of his time. His work for
the Allies’ code breaking efforts were part of a larger effort in which many mathematicians played
important roles.

The focus of most of the code breaking work was to discover the secret workings of the German
Enigma machine a mechanical encryption/decryption machine which worked with a number of
rotors and gears. The working of these machines can be described as permutations.

14Quoted in “Cryptanalysis in World War II – and Mathematics Education,” by Peter Hilton, Mathematics
Teacher , Vol. 77, Oct. 1984, pp. 548-52.
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Figure 3.3: Four rotor Enigma machine (right) and Enigma plugboard (left).

Some of the simplest Enigma machines were decrypted as early as 1932 by Marian Adam
Rejewski (Polish mathematician; 1905 - 1980).

The work of the Allied mathematicians is celebrated in the Bletchley Park Museum not far
from London, England and at the National Cryptologic Museum in Annapolis Junction, Maryland.
Additionally, enormous amounts of information about these topics is available online, in print, and
in documentaries. There are also numerous novels and movies that present historically-based
fiction related to the actual events and accomplishments.

3.11.3 History: Navajo Code Talkers and World War II Encryption

While the code breaking focus in the war in the Atlantic was on the German Enigma machine,
the war in the Pacific had its own important links to encryption. Allied intelligence agents were
somewhat successful at breaking Japanese secret codes. The outcome at the Battle of Midway,
one of the changing points in the war, was dramatically impacted by U.S. intelligence success in
codebreaking.

In sharp contrast, the Axis forces had much less success at deciphering Allied codes. One
reason was that U.S. forces encrypted some of their most important messages first by having
native Americans, most notably Navajos, translate the messages into their native language first
before they were then encrypted using mathematical algorithms. These Navajo Code Talkers,
as the most well-known group were called, had been secretly enlisted in the Marine’s intelligence
efforts. Congressional Gold Medals were awarded to the 29 Navajo Code Talkers in December,
2000.

The story of the Navajo Code Talkers serves as the basis for the major motion picture Windtalk-
ers (MGM, 2002). Find out more about the Navajo Code Talkers and their role in U.S. intelligence
efforts in the Second World War.15 Write a brief, two- to three-page biographical essay, addressed

15See, e.g., Navajo Weapon: The Navajo Code Talkers by Sally McClain, Rio Nuevo Publishers, 2002; Warriors:
Navajo Code Talkers by Kenji Kawano, Kanji Kawano, and Carl Gorman, Northland Publishers, 1990; The Navajo
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to fellow students, that describes your findings.

3.11.4 Secret Codes and Statistics

The oldest and historically most frequently employed type of secret codes are based on a scheme
where each letter of the alphabet is replaced by a different letter. While one can try to complicate
this basic scheme in many ways, codes like this are relatively easy to break using statistical methods.
For a nice introduction to the statistical analysis of codes, in a guided discovery approach that is
quite similar to the approach in this text, see Section 9.2 “The Breaking of Ciphers and Codes:
An Application of Statistics” (pp. 537 - 545) in Mathematics: A Human Endeavor by Harold R.
Jacobs.16

Code Talkers by Doris A. Paul, Dorrance Publishing, 1998.
16Third edition, 1994 by W.H. Freeman.
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3.12 Further Investigations

3.12.1 Dirichlet and Primes in Arithmetic Progressions

The discussion of twin primes and arithmetic progressions of primes focussed on primes that arise
consecutively in arithmetic progressions. In the mid-Eighteenth century mathematicians were not
concerned with these primes arising consecutively, but rather how frequently primes occurred in a
given arithmetic sequence. For example, the arithmetic progression starting at 3 with gap size
4 generates the primes that are circled:

3©, 7©, 11©, 15, 19©, 23©, 27, 31©, 35, 39, 43©, 47©, 51,

55, 59©, 63, 67©, 71©, 75, 79©, 83©, 87, 91, 95, 99, . . .

For the numbers up to 100, this arithmetic progression has missed the primes

2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97.

It has generated 13 primes and missed 12. In other words, it has generated roughly half of the
primes under 100. As you count primes generated further and further out, this arithmetic progres-
sion generates the primes with a frequency of about 1

2 . Indeed, it is the case that asymptotically
the frequency is exactly 1

2 .
A general result which establishes the frequency of primes in any arithmetic progression was

proved in 1837 by Johann Peter Gustav Lejeune Dirichlet (German mathematician; 1805 -
1859). It is a beautiful and powerful result, established with the invention of mathematical tools
in number theory which remain in critical use today - including in investigations of the $1 Million
Riemann hypothesis which we will meet shortly.

F1. Investigate the proportion of primes that appear to be generated in the general arithmetic
progression a, a + d, a + 2d, a + 3d, . . . by investigating a number of specific cases. It may
be useful to compile data with a group. Using this empirical data, see if you can rediscover
Dirichlet’s result.

3.12.2 The Euler-Fermat Theorem

In Investigation 65 you should have been able to characterize the results for some of the groups
of congruence computations, namely those with prime moduli. You may have found individual
patterns for some of the non-prime moduli, but likely nothing to tie them together.

Fermat never found such a connection, but Euler would later after he proved Fermat’s little
theorem.

For any number n define the Euler phi function, denoted by φ (n), to be the number of
positive integers between 1 and n whose greatest common factor with n is 1. So, for example,
φ (8) = 4 since 1, 3, 5 and 7 are numbers less than 8 who share only 1 as a common factor with 8.

F2. Explain why φ (3) = 2.

F3. Explain why φ (4) = 2.

F4. Explain why φ (5) = 4.
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F5. Explain why φ (6) = 2.

F6. Prove that φ (p) = p− 1 for any prime p.

F7. In Investigation 57 you investigated mod 4 congruences of cubes. Instead, consider squares.
That is, reduce each of the congruences below to a number smaller than the modulus, 4:

12 ≡ (mod 4)

22 ≡ (mod 4)

32 ≡ (mod 4)

42 ≡ (mod 4)

52 ≡ (mod 4)

62 ≡ (mod 4)

72 ≡ (mod 4)

82 ≡ (mod 4)

92 ≡ (mod 4)

F8. Similarly, for mod6 congruences investigate squares instead of quintics:

12 ≡ (mod 6)

22 ≡ (mod 6)

32 ≡ (mod 6)

42 ≡ (mod 6)

52 ≡ (mod 6)

62 ≡ (mod 6)

72 ≡ (mod 6)

82 ≡ (mod 6)

92 ≡ (mod 6)

F9. Choose some other moduli n > 6 which is non-prime and reduce each of the congruences
below:

1φ(n) ≡ (mod n)

2φ(n) ≡ (mod n)

3φ(n) ≡ (mod n)

4φ(n) ≡ (mod n)

5φ(n) ≡ (mod n)

6φ(n) ≡ (mod n)
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7φ(n) ≡ (mod n)

8φ(n) ≡ (mod n)

9φ(n) ≡ (mod n)

10φ(n) ≡ (mod n)

11φ(n) ≡ (mod n)

F10. Can you now generalize Fermat’s little theorem to describe congruences of the form
aφ(n) mod n?

3.12.3 Example of RSA Implementation

Those interested in trying a concrete example of implementing RSA to develop a small-scale set of
keys to encrypt and decrypt a simple message will find the article “Using Clock Arithmetic to Send
Secret Messages” by Catherine A. Forini, The Mathematics Teachers, Vol. 89, No. 2, February
1996, pp. 100 - 104 to be helpful.

One can also find many worked out examples on the Internet.

F11. Set up your own small-scale RSA scheme and use it to encode and decode a simple mes-
sage.
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Chapter 4

Class Numbers: A Bridge Between
Two $1 Million Dollar Problems

If I were to awaken after having slept for a thousand years, my first question would be: Has
the Riemann hypothesis been proven?

David Hilbert (German mathematician; 1862 - 1943)

It will be another million years, at least, before we understand the primes.

Paul Erdos (Hungarian mathematician; 1913 - 1996)

It would be very discouraging if somewhere down the line you could ask a computer if the
Riemann hypothesis is correct and it said, ’Yes, it is true, but you won’t be able to understand
the proof.’

Ronald Graham (American mathematician; 1935 - )

4.1 Guiding Problems

At the 1900 International Congress of Mathematicians, the most prestigious mathematical confer-
ence and which is held every four years, David Hilbert (German mathematician; 1862 - 1943),
perhaps the preeminent mathematician of the time, proposed a list of problems to challenge math-
ematicians for the next century. The complete list included 23 problems. These problems have
become known as Hilbert’s problems. The prestige these problems have had are a tribute to the
great insights of Hilbert to focus on these specific problems.

Over the past century, the majority of Hilbert’s problems have been resolved.
On May 24, 2000, “to celebrate mathematics in the new millennium” the Clay Mathematics

Institute announced seven Millennium Prize Problems each which carried a $ 1 Million prize for
its solution. The topics in this chapter are integrally related to two of these problems, both of
which remain unresolved, the Riemann hypothesis and the Birch and Swinerton-Dyer conjecture.

The quotes that open the chapter give some sense of the importance these problems hold for
mathematicians. The influential George Polya (Hungarian mathematician and educator; 1887
- 1985) tells a wonderful story about the grip the Riemann hypothesis had on Godfrey Harold
Hardy (English mathematician; 1877 - 1947):
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You must know that Hardy had a running feud with God. In Hardy’s view God had
nothing more important to do than frustrate Hardy. This led to a sort of insurance
policy for Hardy one time when he was trying to get back to Cambridge after a visit
to [Herald] Bohr in Denmark. The weather was bad and there was only a small boat
available. Hardy thought there was a real possibility the boat would sink. So he sent a
postcard to Bohr saying, ”I proved the Riemann Hypothesis. G.H. Hardy.” That way if
the boat sank, everyone would think that Hardy had proved the Riemann Hypothesis.
God could not allow so much glory for Hardy so he could not allow the boat to sink.

4.2 Distribution of the Primes

To me, that the distribution of prime numbers can be so accurately represented in a harmonic
analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a secret
harmony composed by the prime numbers.1

Enrico Bombieri (Italian mathematician; 1940 - )

In Chapter 3 there were investigations of different types of primes. A fundamental question is:
How many primes are there? If Fermat had been correct and all numbers of the form Fn = 22

n

+1
were prime then there would clearly be infinitely many primes - this expression would generate
them one after another indefinitely. Similarly if we could find out which among the Mersenne
numbers were prime. We noted that by Zhang’s new bounded gaps theorem there are infinitely
many primes that are separated by at most 246. But is there an easier way to see that there are
infinitely many primes?

It turns out there are many different proofs that there are infinitely many primes. One of the
author’s favorites was thought of by Filip Saidak (; - ) as he was waiting for a bus!2 The mind
works in such mysterious ways. If you’re interested in this beautiful proof, it’s included in the
chapter “Proof” in Discovering the Art of Mathematics: Reasoning, Proof, Certainty & Truth.
Here you’ll rediscover one of the most famous of the proofs of the infinitude of the primes, Euclid’s
proof his Elements.

1. Complete each of the following computations and determine if the resulting number is prime
or not:

2 + 1 =

2 · 3 + 1 =

2 · 3 · 5 + 1 =

2 · 3 · 5 · 7 + 1 =

2 · 3 · 5 · 7 · 11 + 1 =

2. Do you think that the pattern in Investigation 1 will continue indefinitely? Why or why not?

3. If the pattern in Investigation 1 did go on for ever, what could you conclude about the
number of primes?

1From “Prime Territory: Exploring the Infinite Landscape at the Base of the Number System”, The Sciences,
Sept/Oct 1992.

2Personal communication.
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4. Complete the calculation
2 · 3 · 5 · 7 · 11 · 13 + 1,

and then determine if the resulting number is prime. If it is not prime, completely factor the
number into prime factors.

5. Repeat Investigation 4 for the number 2 · 3 · 5 · 7 · 11 · 13 · 17 + 1.

6. Repeat Investigation 4 for the number 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 + 1. (Hint: 347.)

7. In the preceding Investigations, if the number formed was not prime then how are its prime
factors related to the primes used to create the number?

8. If the pattern in Investigation 7 did continue forever, what would this tell you about the
number of prime numbers? Explain.

Consider the general number formed in this sequence we’re using to find more primes. It has
the form

2 · 3 · 5 · · · pn + 1

where 2, 3, 5, . . . pn are consecutive primes.

9. Is the number 2 · 3 · 5 · · · pn + 1 divisible by 2? Explain.

10. Is the number 2 · 3 · 5 · · · pn + 1 divisible by 3? Explain.

11. Is the number 2 · 3 · 5 · · · pn + 1 divisible by 5? Explain.

12. Is the number 2 · 3 · 5 · · · pn + 1 divisible by pn? Explain.

13. Is the number 2 · 3 · 5 · · · pn + 1 divisible by any of the primes between 2 and pn? Explain.

14. Explain why this guarantees that there is another prime larger than pn.

15. Thereby, explain why this process proves that there are infinitely many primes.

Now that we know the primes go on forever a natural question to ask is: How are the primes
distributed among the other numbers? With enormous patience, mathematicians of the eighteenth
and nineteenth century compiled lists of primes and sought to determine their distribution. Some
of the most basic data is that between 1 − 1, 000 there are 168 primes. Between 1, 001 − 2, 000
there are 135 primes. Between 2, 001− 3, 000 there are 127 primes. Between 3, 001− 4, 000 there
are 120 primes. It seems the primes arise less frequently the larger the numbers we look at.

16. Put yourself in the role of an eighteenth century mathematician seeking to determine whether
a given number was prime or not. What must you do to guarantee that the number is prime?

17. Suppose two numbers are chosen at random, one significantly larger than the other. Why is
the larger number less likely to be prime?

Let’s return to numbers like those you used in the Euclidean proof of the infinitude of the
primes, numbers like:

2 · 3 · 5 · 7 · 11 · 13

2 · 3 · 5 · 7 · 11 · 13 + 1 is prime. What about other, nearby numbers?
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18. Without using a calculator determine whether 2 · 3 · 5 · 7 · 11 · 13 + 2 is prime or not.

19. Similarly, without a calculator, determine whether 2 · 3 · 5 · 7 · 11 · 13 + 3 is prime or not.

20. Repeat Investigation 19 for each of the numbers 2·3·5·7·11·13+4 through 2·3·5·7·11·13+13.

21. How many consecutive numbers have you found that are composite?

22. Determine how you could find over 50 composite numbers in a row.

23. Determine how you could find over 100 composite numbers in a row.

24. Is there any limit to the number of consecutive composite numbers you could find? Explain.

25. Contrast your answer in Investigation 24 with the conclusion of the twin prime conjecture.
What does this contrast tell you about the distribution of the prime numbers?

Thus, we see great volatility in the distribution of the primes. As early as 1800 mathematicians
began to suspect the distribution of primes could be understood if instead you considered it on
average as one moves farther and farther out along the number line. And some began to think the
behavior may be related to the natural logarithm via the expression n

lnn .

26. Compute n
loge n

for n = 1000 and compare the result with the data about primes given above.

27. Repeat for n = 2000, 3000 and 4000.

In 1859 Bernhard Riemann (Berman mathematician; 1826 - 1866) wrote a 6-page paper
named “On the Number of Prime Numbers Less Than a Given Quantity.” This became one
of the most important papers written in the history of mathematics, giving rise to the Rie-
mann hypothesis which was both a Hilbert Problem and one of the Millennium Prize Prob-
lems. The handwritten manuscript, along with an English translation, are available at http:

//www.claymath.org/publications/riemanns-1859-manuscript. While the Riemann hypoth-
esis remains an open question, the paper’s approach was so powerful - in particular because it
brought the power of imaginary numbers and complex numbers to the study of number theory -
that it enabled mathematicians to make progress on the average behavior of the distribution of
the prime numbers. In 1896 Jacque Salamon Hadamard (French mathematician; 1865 - 1963)
and Charles Jean Gustave Nicolas Baron de la Vallee Poussin (Belgian mathematician;
1866 - 1962) independently proved the celebrated Prime Number Theorem which says that as you
go farther and farther out in the number line the number of primes in the first n numbers is more
and more closely approximated by the quantity n

loge n
.

This still leaves the specific behavior of the distribution of primes quite mysterious. Don
Zagier (American mathematician; 1951 - ), one of the Directors of the Max Planck Institute for
Mathematics, summarized our understanding of the distribution of the prime numbers as follows:

There are two facts about the distribution of prime numbers which I hope to convince
you so overwhelmingly that they will be permanently engraved in your hearts. The
first is that despite their simple definition and role as the building blocks of the natural
numbers, the prime numbers... grow like weeds among the natural numbers, seeming
to obey no other law than that of chance, and nobody can predict where the next one
will sprout. The second fact is even more astonishing, for it states just the opposite:
that the prime numbers exhibit stunning regularity, that there are laws governing their
behaviour, and that they obey these laws with almost military precision.
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4.3 Class Numbers

The results of investigations in the previous suggestion should give a fairly clear indication of our
fairly meager understanding of the distribution of the primes. Much deeper understanding of the
primes would follow from a positive validation of the Riemann Hypothesis. Indeed, even its name
speaks to this fact. Mathematicians generally use the word “conjecture” rather than “hypothesis”.
However, many mathematicians have worked as if the Riemann hypothesis will be validated and
can be used in their work, so the word “hypothesis” is appropriate. Peter Sarnak (South African
mathematician; 1953 - ) notes:

The Riemann Hypothesis is the central problem and it implies many, many things.
One thing that makes it rather unusual in mathematics today is that there must be
over five hundred papers - somebody should go and count - which start ”Assume the
Riemann Hypothesis”, and the conclusion is fantastic. And those [conclusions] would
then become theorems...With this one solution you would have proven five hundred
theorems or more at once.3

In this section we consider an accessible topic that involves the distribution of primes using
the fantastical, and surprising, lens of imaginary and complex numbers to see. The class numbers
that arise in these investigations are related to two 1$ Million problems.

28. Consider the number sequence which begins 0, 2, 6, 12, 20. There is a simple way that this
pattern can be extended.4 What would the next six terms be if extended in this simple way?

We would like to find a function f whose outputs are precisely this sequence. In table form
this means we want a function with the following table of values:

n f
0 0
1 2
2 6
3 12
4 20

29. Copy the table above into your notes, adding several more of the values you found.

30. Find a pattern in this table of values.

31. Can you use this pattern to determine a formula for the function f?

Patterns can be viewed in many different ways. One way to view the pattern in the table above
is to factor each f value into two terms.

32. Factor each term on the right of the table into two terms. Can you do this so there is a clear
pattern in the individual factors?

3From Dr. Riemann’s Zeros by K. Sabbagh, Atlantic, 2002, p.188
4One must be careful. Although problems like this appear on standardized exams of all sorts, they are inappro-

priately misleading. There are infinitely many ways in which this sequence can continue. 0, 2, 6, 12, 20, 0, 6, 12,
20, 0, 6, 12, 20,... is one perfectly acceptable way. So is 0, 2, 6, 12, 20, 0, 4,12, 24, 40, 0, 6, 18, 36, 60,... In fact,
there is nothing wrong with 0, 2, 6, 12, 20, 3, 4, 3, 4, 3, 4,..., it’s just not what we might expect.
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33. Use this factoring to determine a formula for the function f .

34. Check your result for several known values of n to insure your formula is correct.

The function s(n) = n2 + n+ 17 is closely related to the function you just found.

35. Make a table of values of the function s as the variable n ranges from 0 to 8.

36. The difference between the f values from one row of the table to the next are called first
differences. Compute the first differences of the functions f and s and show they are the
same. Explain why this should be so.

37. You should notice an interesting attribute that all of the s values in your table in Investiga-
tion 35 share. Explain.

38. Do you believe that all entries in the table, no matter how far it is continued, will share the
attribute you have described in Investigation 37? Explain.

39. Check your result in Investigation 37 by continuing your table to include the values n =
8, . . . , 15. Does this increase your confidence in your previous answer?

40. What is the value of the next output, s(16)? Does it share this pattern of all outputs sharing
the same attribute?

41. What about the value of the next output, s(17)? Show algebraically why this output must
violate your pattern.

4.4 A Class Number Sieve

The function s was very interesting because it generated a long list of primes. Is there a different
function that generates even more primes?

With s(n) = n2 + n + 17 as our impetus, we are going to look via quadratic functions of the
form q(n) = n2 + n+ c where we will let the value of c vary.

42. Show that the first differences of the quadratic q will be the same as those of f and s above
regardless of the value of c.

The observation in Investigation 42 will allow us to analyze the family of quadratics q in our
search for primes. We will do so by constructing a Class Number Sieve - a physical tool for looking
for prime generating quadratic functions that we now describe.

The appendix contains several sheets you will need. Take a 1 - 250 number table and highlight
all of the prime numbers using a highlighter. Cut off one of the margins and then roll the table
into a 1 - 250 cylinder which is slightly offset so as you follow the numbers 1− 2− 3− · · · around
the cylinder 11 − 12 − 13 − · · · immediately follow 10 on the cylinder. I.e. so you have wrapped
the number line around the cylinder in a spiral. Tape it securely. To complete the prime cylinder,
record a 0 just before the 1 in the number spiral. The exterior of the sieve is constructed using the
indicated sheet from the appendix. Carefully use a razor knife to cut out each of the highlighted
cells on sieve. Highlight the border of top, left window with a highlighter - it will be our sieve
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setting. Cut both the right and left margins off the sieve along the indicated lines. Put clear,
transparent tape over the front and back of each of the “windows” in the sieve for strength. Then
wrap the sieve around the cylinder. Carefully align the marks on the right with the appropriate
windows so it orientation will be the same as the number table cylinder.

Figure 4.1: Completed Class Number Sieve.

43. Rotate the sieve so the sieve setting is 17. Your sieve should look like that in Figure 4.1
What do you notice about the entries in the windows? I.e. precisely how do these entries
relate to results of earlier investigations?

44. Rotate the sieve again so the sieve setting is 0. What do you notice about the entries in the
windows? I.e. precisely how do these entries relate to results of earlier investigations?

45. You should see a critical relationship between entries in the windows for a given sieve setting
and the functions q parameterized by the value of c. Describe this relationship precisely

Our observations in Investigation 43 - Investigation 45 show us that this Class Number
Sieve is tool we need to investigate the family of quadratics q and their ability to generate primes.

We could continue providing a list of prompts, but this is a perfect opportunity for you to
explore. After all, mathematics is really characterized by open ended investigations of exactly this
sort. I.e. we’ve taken you on a guided tour so far, now it is time to set out on your own for a bit.

Goal: Understand the ways in which functions q generate primes as outputs depending on
the value of the parameter c.
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This investigation should take some time. You should write down notes, observations, perhaps
tables of data, etc. You should come up with a number of results, both positive and negative (i.e.
generating lots of primes versus not many at all), which you should state as precise conjectures.
These conjectures should relate to our study of the distribution of primes above.

4.5 Gauss’ Class Number Problem

In the previous section you found that several sieve settings were special - giving rise to long strings
of consecutive primes. Are there other sieve settings that exist simply beyond the physical limits
of the class number sieve we built? The answer to this question about whole numbers takes us -
miraculously - into the realm of complex number fields such as the Gaussian integers.

The quadratic formula for solving the quadratic equation ax2 + bx+ c = 0 is one of the most
well-known of all mathematical formulae:

x =
−b±

√
b−4ac

2a
.

46. Factor to solve the quadratic equation x2 + 4x− 12 = 0.

47. Solve this same quadratic equation by using the quadratic formula.

48. Factor to solve the quadratic equation 3x2 + 6x− 24 = 0.

49. Solve this same quadratic equation by using the quadratic formula.

50. Does the quadratic equation x2 + 1 = 0 have any solutions? Explain.

51. Apply the quadratic formula to this same quadratic equation, simplifying the result. Have
you found a solution?

The quadratic formula typically comes with a dire warning against negative discriminants,
b2 − 4ac < 0, as square roots of negative numbers do not exist. While square roots of negative
numbers do not exist as real numbers, to say they do not exist is badly misleading. As early as
the sixteenth century mathematicians realized that solution of important, concrete mathematical
questions could be obtained most easily by taking detours involving square roots of negative
numbers. Mathematicians adjoined the imaginary unit i =

√
−1 into our number system and

extended the arithmetic operations in a ‘natural’ way to form what is known as the complex
number field, the set of numbers of the form a +

√
−1b = a + ib, where a, b are real numbers.

The chapter “Existence of
√
−1: A Case Study” in Discovering the Art of Mathematics: Truth,

Reasoning, Certainty & Proof gives a nice tour of some of the foundational aspects of the complex
number field, including an illustration of how the geometry of complex multiplication gives a vivid,
simple explanation of why the product of two negative numbers should be positive.

By the time of Carl Friedrich Gauss (German mathematician; 1777 - 1855) imaginary and
complex numbers were widely accepted tools. Gauss realized that in the realm of number theory
they could also serve as important tools.
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52. Use the quadratic equation to solve the quadratic equation n2 + n + 17 = 0 studied above
and there by establish a connection between the sieve number c = 17 and the class number5

d = 67.

Gauss found several other class numbers as well.

53. Mimic Investigation 52 to find a connection between an important sieve number above and
the class number d = 43.

54. Repeat Investigation 53 for the class number d = 19.

55. Repeat Investigation 53 for the class number d = 163.

56. Repeat Investigation 53 for the class number d = 7.

Taking note of numbers like 1
2 +

√
7i
2 Gauss became curious about systems of numbers of the

form Z/2Z[
√
di] =

{
a
2 + b

√
di

2

}
. That they would be noteworthy seems almost absurd - half-

integers combined with the irrational
√
d and the imaginary i =

√
−1. What a mess. Except that

he found that for some of these systems the equivalent of the fundamental theorem of arithmetic
held - there were clearly defined prime numbers and each number had a unique factorization into
primes!

57. Explain why both 2 and 4 belong to the system Z/2Z[
√

15i].

58. Compute the product
(

1
2 +

√
15i
2

)(
1
2 −

√
15i
2

)
.

59. The numbers 2, 12 +
√
15i
2 and 1

2 −
√
15i
2 are all irreducible in Z/2Z[

√
15i], the numbers we

would like to call the primes. Explain why the fundamental theorem of arithmetic does not
hold in Z/2Z[

√
15i.

60. Compute
(

1
2 +

√
7i
2

)(
1
2 −

√
7i
2

)
.

61. Find another way to factor the product from Investigation 60. Try to factor it as completely
as you think you can.

62. So it would appear that Z/2Z[
√

7i] does not have unique factorization either. Deceptively, 2

is not prime in Z/2Z[
√

7i]. 1
2 +

√
7i
2 is one factor of 2, find the other.

In fact, Z/2Z[
√

7i] has an equivalent of the fundamental theorem of arithmetic! This is why
7 has the special designation as a class number. Gauss and his contemporaries knew of 9 class
numbers: 1, 2, 3, 7, 11, 19, 43, 67, and 163. Other than the first two, each gives rise to an
important sieve number you considered above. And each gives rise to a number system with
unique factorization into primes.

The big question is: Are there any other class numbers?
For over 100 years, nobody knew. In 1934 Hans Arnold Heilbronn (German mathematician;

1908 - 1975) and Edward H. Linfoot (British mathematician; 1905 - 1982) proved that there

5Strictly speaking this is not the precise way in which mathematicians use this term. But it is appropriate here
given the context of our study.
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was at most one more such class number, and it would be astronomically large if it existed. In
1952, after he retired, Kurt Heegner (German educator; 1893 - 1965), who did mathematics as
a hobby, published a paper claiming to prove that Guass’ original list was complete; there were no
other class numbers. Apparently nobody noticed the importance of the paper!

In 1967 Harold Stark (American mathematician; 1939 - ) and Alan Baker (English math-
ematician; 1939 - ) proved this result in a mainstream journal. After this, people became aware
of Heegner’s proof. When they did they discovered his proof was indeed correct.6 Later, as
mathematicians studied more general class number problems, Heegner was rewarded. In 1983
Don Zagier (American mathematician; 1951 - ) and Benedict Gross (American mathemati-
cian; 1950 - ) announced in they had extended the breakthrough of Dorian Goldfelds (American
mathematician; 1947 - ) in 1975 to solve the more general Gauss class number problem (in a 300
page paper which included a 100 page calculation!). In this paper they named a key new type of
mathematical object Heegner points in honor of Heegner’s forgotten work.

Remarkably, these results show that the special sieve numbers you found above are the end of
the road!! There are no sieve numbers c which perform in the way those found above do. There
is no run of prime outputs any longer than those you already found for quadratic functions of the
form we were considering!

Might different types of functions find more primes? Single variable polynomials like the
quadratics above will not work to generate primes indefinitely - Christian Goldbach (German
mathematician; 1690 - 1764) proved this long ago. In contrast, in proving Hilbert’s 10th problem
Martin Davis (American mathematician; 1928 - ), Yuri Matiyasevich (Russian mathemati-
cian; 1947 - ), Hilary Putnam (American philosopher and mathematician; 1926 - ) and Julia
Robinson (American mathematician; 1919 - 1985) guaranteed there was a multivariable poly-
nomial that would generate all of the primes. They proved this even though they did could not
explicitly find such a polynomial! In 1976 James P. Jones (Canadian mathematician; - ), Dai-
hachiro Sato (Japanese mathematician; 1932 - 2008), Hideo Wada (Japanese mathematician;
- ), and Douglas Wiens (Canadian statistician; - )7 actually found such a polynomial explicitly:

(k + 2)(1−[wz + h+ j − q]2 − [(gk + 2g + k + 1)(h+ j) + h− z]2 − [2n+ p+ q + z − e]2

−[16(k + 1)3(k + 2)(n+ 1)2 + 1− f2]2 − [e3(e+ 2)(a+ 1)2 + 1− 02]2

−[(a2 − 1)y2 + 1− x2]2 − [16r2y4(a2 − 1) + 1− u2]2

−[((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2 + [n+ l + v − y]2

−[(a2 − 1)t2 + 1−m2]2 − [ai+ k + 1 + l + i]2

−[p+ l(a− n− 1) + b(2an+ 2an+ 2a− n2 − 2n− 2)−m]2

−[q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

−[z + pl(a− p− p2 − 1)− pm]2)

When the variables a, b, c, . . . , x, y, z - yes, one for each letter of the English alphabet - take on
positive values then the set of positive outputs is precisely the set of prime numbers. Unfortunately,
this function is really only of theoretical interest. For the output to be positive each term in large
brackets must simultaneously be zero as they are nonnegative and subtracted from 1. Hence, as

6See Mathematics: The New Golden Age by Keith Devlin, pp. 79-80.
7“Diophantine representation of the set of prime numbers,” American Mathematical Monthly, Vol. 83, No. 6,

June-July, 1976, pp. 449-64.
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Underwood Dudley (American mathematician; 1937 - ) reminds us, “the first positive value
might not appear until considerably after the end of the universe, and even then it might be
something trivial, like 17.”8

4.6 The Riemann Hypothesis

Prime numbers are a lot like musical chords. . . A chord is a combination of notes played
simultaneously. Each note is a particular frequency of sound created by a process of resonance
in a physical system. Put together, notes can make a wide variety of music. In number theory,
zeroes of the zeta function are the notes, primes numbers are the chords, and theorems [like
the Riemann hypothesis] are the symphonies.9

Barry Cipra (American mathematical journalist; - )

“Loosely speaking, the Riemann hypothesis states that the primes have music in them”,
[Michael] Berry says. But Berry is looking for more than a musical analogy - he hopes to
find the actual instrument behind the zeta function - a mathematical drum whose natural fre-
quencies line up with the zeroes of the zeta function. The answer, he thinks, lies in quantum
mechanics. “There are vibrations in classical physics too” he notes, “but QM is a richer, more
varied source of vibrating systems than any classical oscillators that we know of.”10

Barry Cipra (American mathematical journalist; - )

For two millennia humanity has tried to unlock the secrets of the prime numbers. The Riemann
hypothesis is one of the keys to unlocking these secrets. It suggests deep relationships with music
and with physics. Yet over 150 years since it was stated by Riemann, it stands as one of the major
challenges to mathematicians. Above we studied Gauss’ Class Number Problem above because
you could actually explore mathematics related to this great problem. Here we give a general
description of Riemann’s hypothesis.

At the heart of the Riemann Hypothesis is a function called the zeta-function. Leonard Euler
(Swiss mathematician; 1707 - 1783) discovered the following remarkable, and very infinite, identity:

1

1s
+

1

2s
+

1

3s
+

1

4s
+ . . . =

(
1

1− ( 1
2 )s

)
×
(

1

1− ( 1
3 )s

)
×
(

1

1− ( 1
5 )s

)
×
(

1

1− ( 1
7 )s

)
× · · · ,

which holds for all real numbers s > 1.

63. Write out several more terms in the infinite series on the left.

64. What is the pattern in the numerators of the terms on the left?

65. Write out several more terms in the infinite product on the right.

66. What is the pattern of the fractions in the numerators of the terms on the right?

8“Formulas for Primes,” Mathematics Magazine, Vol. 56, No. 1, Jan. 1983, pp. 17-22
9From “A Prime Case of Chaos”, in What’s Happening in the Mathematical Sciences:1998-99, vol. 4, American

Mathematical Society, p. 7.
10From “A Prime Case of Chaos” in What’s Happening in the Mathematical Sciences: 1998-99, Vol. 4, American

Mathematical Society, p. 7.
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In his landmark 1859 paper Riemann continued this function to an analytic function on the
entire complex plane except for a single pole at s = 1. I.e. this function, now known as the
Riemann zeta function, isn’t just a function for real numbers s > 1, but it is a well-behaved
function for all complex numbers s 6= 1. Amazingly, through this function, our search for an
understanding of the behavior of the primes manifests itself as a search for the location of the
zeroes of a complex valued function of a complex variable.

The Riemann Hypothesis posits that all nontrivial zeroes of this function lie along the line
1
2 +t
√
−1. Through December, 2005 when it went offline, ZetaGrid was a distributed computing

site where computer users could donate their idle CPU time to search for zeroes of the zeta function.
The first 900 billion zeroes they found are located on the proposed line. We don’t know about
the rest. As mathematicians have struggled over the decades with this problem they have studied
related objects and problems. This has lead them to so-called L-functions which are kin to the
Riemann zeta-function. It is hoped that the study of such functions will shed light on the Riemann
Hypothesis as well as many other problems.

So where does the Class Number Problem fit into all of this? In his prize-winning article on the
Riemann Hypothesis11, J. Brian Conrey (Director of the American Institute of Mathematics; -
), tells us:

There is a growing body of evidence that there is a conspiracy among L-functions -
a conspiracy which is preventing us from solving RH! . . . The history of Gauss’ [Class
Number Problem] is extremely interesting; it has many twists and turns and is not yet
finished - we seem to be players in the middle of a mystery novel. . . Much effort has
gone toward find[ing] an effective solution to Gauss’ problem. However, the L-function
conspiracy blocks every attempt exactly at the point where success appears to be in
sight. We begin to suspect that the battle for RH will not be won without getting to
the bottom of this conspiracy.

4.7 Another $ 1Million Problem

Remarkably, our journey through the lower slopes of Gauss’ Class Number problem not only
connects to the steepest trails through the uncharted mathematical territory whose peak represents
the conquest of the Riemann hypothesis, it has also taken us to trailheads to another of $1 Million
Millennium Prize Problem, the Birch and Swinnerton-Dyer Conjecture .

While we tried to give some sense of the exact nature of the Riemann hypothesis - the location
of zeroes of an analytically continued complex function of a complex variable - the challenge to
describe the Birch and Swinnerton-Dyer conjecture is even greater. For the purposes of explorers
using this book as a guide of discovery this is not essential. We can tell some of the story to help
elucidate the nature of contemporary mathematics.

As noted, the trailheads to the Riemann hypothesis [RH] and Birch and Swinnerton-Dyer
conjecture [BSDC] are close together, both connected to the Gauss’ Class Number Problem. We
don’t know where they will go. But from how far we can see, RH proceeds ahead analytically.
In contrast, BSDC moves much more algebraically along the slopes we can seen. RH is an old,

11“The Riemann Hypothesis,” Notices of the American Mathematical Society, March 2003, pp. 341 - 353; winner
of the 2008 Conant Prize.
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classical problem, while BSDC resulted from joint work by Bryan Birch and Peter Swinnerton-
Dyer in the 1960’s. RH involves the distribution of the primes and needed data for its genesis. Yet
its premise is global in nature. In contrast, BSDC relied heavily on extensive bodies of research
carried out with the help of powerful computers into the nature of very specific mathematical
objects. I.e. it arose from much more local considerations.

Despite these differences, perhaps these trails converge much higher up the slopes as both are
fundamental to the study of L-functions.12

For more on these two topics, see The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time
by Keith Devlin.

12“L-series of elliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss,”
Notices of the American Mathematical Society, Vol. 31, No. 7, November 1984, pp. 739-43.
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Chapter 5

Partitions

“What’s one and one and one and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.” “She can’t do addition,” said the Red Queen.

Lewis Carroll (British Author and Mathematician; 1832 - 1898)

Read Euler, he is our master in all.

P.S. Laplace (French Mathematician; 1749 - 1827)

The trouble with the integers is that we have examined only the very small ones. Maybe all
the exciting stuff happens at really big numbers, ones we can’t even begin to think about in
any very definite way. Our brains have evolved to get us out of the rain, find where the berries
are, and keep us from getting killed. Our brains did not evolve to help us grasp really large
numbers or to look at things in a hundred thousand dimensions.

Ronald L. Graham (American Mathematician; 1935 - )

5.1 The Births of Modern Number Theory

Throughout this text the work of many mathematicians in number theory is mentioned. In every
field of mathematics each new generation adds a new story to the edifice of mathematics, and each
new generation has many builders. Yet in number theory the large cast of players is overshadowed
by just three mathematicians - Pierre de Fermat, Leonhard Euler, and Carl Friedrich Gauss -
whose work is chiefly responsible for the formative history of number theory. As André Weil
(French Mathematicain; 1906 - 1998), one of the twentieth century’s foremost number theorists,
notes in his definitive work on the history of number theory:

One might. . . try to record the date of birth of the modern theory of numbers; like the
god Bacchus, however, it seems to have been twice-born. Its first birth must have oc-
curred at some point between 1621 and 1636, probably closer to the later date. . . when
Fermat acquired a copy of this book [a translation of the Greek Diophantus’ Arith-
metica]. . . As to its rebirth, we can pinpoint it quite accurately. On the first of De-
cember 1729, Goldbach asked Euler for his views about Fermat’s statement that all
integers 22

n

+ 1 are primes. . . After that day, Euler never lost sight of this topic and of
number theory in general. . . Number theory reached full maturity [with Gauss].1

1Number Theory: An Approach through History from Hammurapi to Legendre, Birkhauser Boston, 1984.
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We have either already seen, or will soon see, the mathematics that initiated these key moments
in the history of number theory.

5.2 The Development of Mathematics Illustrated by Num-
ber Theory

The births of number theory at the hands of Fermat, then Euler, and its later passage into adult-
hood through the work of Gauss provide an illustration that typifies mathematical growth and
development.

Mathematics is generally presented in schools in its final, polished form. A typical topic
is hundreds of years old, and generations of mathematicians and teachers have organized and
reorganized it into a highly logical, streamlined form. It seems certain and lifeless. Long ago its
validity was proven and its connections to other areas were found. It is rare that students are
provided the opportunity to explore the examples, problems, and issues from which an area of
mathematics germinated.

Yet mathematics almost always begins with examples, problems, compelling issues, and uncer-
tainty. A great deal of work is done before the patterns, insights, and conjectures of one generation
are replaced by the proven theories of another. It is generally a generation after that who assembles
the work into a coherent whole.

In number theory, it was Fermat that found the patterns, had the insights, and made the conjec-
tures that would fuel number theory for many generations. He provided few if any proofs, writing
his ideas in the margins of Diophantus’ Arithmetica. It was Euler, a century later, who provided
proofs and generalizations of many of Fermat’s most important observations. A generation later,
it was Gauss that made the work of Euler a coherent whole.

We spoke of Gauss in the previous topic and will return to him in the next, investigating some
of the mathematics that made his Disquisitiones Arithmeticae such a landmark achievement. Here
we will concentrate on a few of the many remarkable connections between Euler and Fermat.

5.3 Connections Between Fermat and Euler

5.3.1 Fermat Primes

We investigated Fermat primes, prime numbers of the form 22
n

+ 1 in Chapter 3. Given Fermat’s
renown, nobody questioned his claim that all of these numbers were prime. It was not until Euler
that we find someone with enough mathematical prowess to disprove Fermat. Euler’s proof that
the “Fermat prime” 22

5

+ 1 is not prime, which you recreated in investigations Investigation 33
- Investigation 35 in Chapter 3, is one of the great mathematical discoveries.2 At this time (late
2013) we know that of the first thirty-three Fermat numbers only the first five are primes.

2In Journey Through Genius: The Great Theorems of Mathematics, [Dun1], Euler scholar William Dunham
(American mathematician; 1947 - ) gives an accessible treatment of Euler’s discovery - one that he includes as one
of his descriptions of mathematics’ thirteen great theorems.
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5.3.2 The (Mathematical) Key to Modern Encryption

In Section ?? of Chapter 3, you studied congruences of the form an−1 (mod n). The desired result
in Investigation 65 in that section is that

an−1 ≡ 1 (mod n)

whenever n is prime and a is not a multiple of n. This result is known as Fermat’s Little
Theorem, to distinguish it from his famous “Last Theorem” which you will see in the final
chapter of this book. While the result was known to ancient mathematicians (e.g. the 5th century
B.C. Chinese; see [Flan, pp. 134-7]), it was rediscovered and reintroduced into mathematics by
Fermat in a letter to Bernard Frénicle de Bessy (French Mathematician; 1605 - 1675) on 18
October, 1640. Fermat was characteristically glib in providing justification. He told Frénicle, “I
would send you the demonstration, if I did not fear its being too long.” ([Bur, pp. 88-9])

It was Euler who supplies the first proof of Fermat’s Little Theorem, almost 100 years later,
in 1736. And Euler did Fermat one better this time. Not only did he prove Fermat’s Little
Theorem, he showed that it could be generalized. (See the Further Investigations in Section 3.12.2
of Chapter 3 for investigations that motivate this result.) That is, Fermat’s Little Theorem is a
special case of a more general pattern which is known by the name of its discoverer. What we
refer to as Euler’s Theorem is the result that:

aφ(n) ≡ 1 (mod n)

whenever a and n have no common factors. Here φ is the Euler phi-function which will have the
value n− 1 whenever n is prime, yielding Fermat’s Little Theorem in that case.3

As shown in Section 3.10 in Chapter 3, Fermat’s Little Theorem, and its generalization to
Euler’s Theorem, are of no little significance. These results are the fundamental mathematical
results upon which most modern encryption methods are based!

5.3.3 Primes and Sums of Two Squares

After the even prime number 2, all primes are odd. If you check, you will easily see that any odd
number can be written in the form 2k+1, where k is a whole number. We don’t learn much about
primes writing the odd primes in this way. However, any odd number can also be written either
as 4k+ 1 or 4k− 1, where k is a whole number. Fermat discovered that the 4k+ 1 primes behave
quite differently than the 4k − 1 primes.

Here you will rediscover that pattern which Fermat discovered (on Christmas day in 16404)
and Euler first proved.

1. Prove that every number which is of the form 4k − 1 or 4k + 1 is odd.

2. Prove that every odd number can be written in the form 4k − 1 or 4k + 1 where k is a
non-negative integer.

3. Show that 29 is a prime of the form 4k + 1.

3In Chapter 2 we used the Greek letter phi to denote the Golden Ratio. This same letter is being used here but
with a different meaning. It will always be clear from context which is being denoted. For one thing, the Golden
Ratio is a constant while phi represents a function in the current context.

4[Bur, p. 242].
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4. 29 can be written as the sum of two squares: 29 = 22 + 52. Can 29 be written as the sum of
two different squares? Prove your result.

5. Show that 37 is a prime of the form 4k+ 1 and determine exactly how many ways 37 can be
expressed as the sum of two squares, proving your result.

6. Choose another prime of the form 4k + 1 and determine exactly how many ways it can be
expressed as the sum of two squares, proving your result.

7. Repeat Investigation 6 for another prime of the form 4k + 1.

8. What pattern do you notice for the 4k + 1 primes?

9. Show that 23 is a prime of the form 4k − 1.

10. Can 23 be written as the sum of two squares? Prove your result.

11. Show that 31 is a prime of the form 4k− 1 and determine exactly how many ways 31 can be
expressed as the sum of two squares, proving your result.

12. Choose another prime of the form 4k − 1 and determine exactly how many ways it can be
expressed as the sum of two squares, proving your result.

13. Repeat Investigation 12 for another prime of the form 4k − 1.

14. What pattern do you notice for the 4k − 1 primes?

5.3.4 Sums of Squares

Fermat and Euler were interested in what they could learn about expressing numbers as sums of
squares. As your investigation of the 4k − 1 primes show, more than two squares will sometimes
have to be used. For example, the 4k − 1 prime 31 requires four squares: 52 + 22 + 12 + 12. In
Section 6.7 in Chapter 6, you will (re-)discover that any number can be expressed as the sum of
not-many-more than two squares. Fermat claimed to have a proof of this result, but his proof was
never found. (As we shall see, this is a recurring theme for Fermat.) Euler set to work on this
problem as early as 1730. He worked on it for 40 years with partial success, proving many partial
results, before Lagrange used many of Euler’s results to give a complete proof. Compelled to find
his own proof, three years later, after working on the problem for 43 years, Euler found a simpler,
original proof. [Dud, pp. 149-50]

You might ask, “What is so special about squares? Why not use other powers?” This is a
natural question, known as Waring’s Problem, and it is the foci of Chapter 6 and Chapter ??.

5.3.5 Fermat’s Last Theorem

Fermat’s Last Theorem is one of the two main foci of Chapter 7. As mentioned in this book’s
Introduction, the theorem is the most famous and long-standing problem in all of mathematics.
It concerns positive integer solutions to the equation an + bn = cn for each of the exponents
n = 2, 3, 4, 5, . . . The first documented progress was due to Fermat, who proved that there were
no solutions when n = 4. The next documented progress was due to Euler who proved that there
were no solutions when n = 3. These two results provided hope to mathematicians’ quests for this
holy grail for more than three centuries.
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5.4 Partitions

What we are doing in number theory is building theoretical telescopes.

Ken Ono (American mathematician; - )

Primality and factorization both arise in the context of multiplication. Since the integers also
have addition as an operation5, it is natural to wonder whether we can find patterns when integers
are represented as sums of other integers. The section above on sums of squares is one example.

Even simpler than writing positive integers as sums of squares is to write them as sums of other
positive integers. For example, we can write

2 = 2 and 2 = 1 + 1.

In writing 2 this way, unlike writing it with multiplication and primes, where there is only one
way to write it, there is no uniqueness. Can we find a pattern to this non-uniqueness?

Decompositions of a positive integer into sums of positive integers are known as partitions.
In counting partitions, the two partitions 2 + 1 and 1 + 2 of 3 are considered to be identical; order
does not matter. Clearly, the partitions of two given above are the only ones, and 1 only has one
partition, 1 = 1. How many partitions of 3 are there? 4? Is there a pattern? You will investigate
this below.

The first detailed study of partitions was taken up by Euler in response to queries from the
mathematician Philippe Naudé (; 1684 - 1745). Euler had great success. While many of Euler’s
results relied on infinite series, and would take us too far afield, the investigations in this and the
next topic will use partitions as a vehicle to explore rich, accessible, and important contemporary
mathematical questions.

5.4.1 Enumerating Partitions

15. Find all the partitions of 3.

16. Use your answer to Investigation 15 to complete the following table:

Interger; n #Partitions; p(n)
1 1
2 2
3

17. Based on the table in Investigation 16, how many partitions of 4 do you expect?

18. What kind of reasoning are you using in your answer to Investigation 17?

19. Find all the partitions of 4.

5Sets that have one operation which satisfies special properties are called groups, a critically important class of
mathematical objects. More special are those sets, like the integers, which have two operations, such as addition
and multiplication, which satisfy special properties and are called rings. One learns about such objects when one
studies modern abstract algebra (not to be confused with high school or college algebra, although these fields are
related) in which Evariste Galois (French Mathematician; 1811 - 1832), a famous mathematical prodigy who was
killed in a duel at the age of 20, and Niels Henrik Abel (Norwegian Mathematician; 1802 - 1829), another prodigy
who died from tuberculosis at age 27, were critical founding figures.
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20. Does your result in Investigation 19 agree with your conjecture in Investigation 17? What
does this tell you about the reasoning that you used to make your conjecture?

21. Use your answer to Investigation 19 to complete the following table:

Interger; n #Partitions; p(n)
1 1
2 2
3
4

22. Find a pattern in the table in Investigation 21, and use it to predict how many partitions of
5 you expect. What kind of reasoning are you using to make this prediction?

23. Find all the partitions of 5.

24. Does your result in Investigation 23 agree with your conjecture in Investigation 22? What
does this tell you about the reasoning that you used to make your conjecture?

25. Use your answer to Investigation 23 to complete the following table:

Interger; n #Partitions; p(n)
1 1
2 2
3
4
5

26. Find a pattern in the table in Investigation 25, and use it to predict how many partitions of
6 you expect. What kind of reasoning are you using to make this prediction?

5.4.2 Counting Strategies

As n becomes larger and larger, the number of partitions of n increases quickly. To find all the
partitions successfully, it is important to have a strategy to insure that none are missed.

27. Find all of the partitions of 6, describing your specific strategy to insure that you have found
all of the partitions.

28. Does your result in Investigation 27 agree with your conjecture in Investigation 26? What
does this tell you about the reasoning that you used to make your conjecture?

29. Use your answer in Investigation 27 to complete the following table:

Interger; n #Partitions; p(n)
1 1
2 2
3
4
5
6
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30. Find a pattern in the table in Investigation 29, and use it to predict how many partitions of
7 you expect. What kind of reasoning are you using to make this prediction?

31. Find all of the partitions of 7, justifying how you know you have found all of the partitions.

32. Does your result in Investigation 31 agree with your conjecture in Investigation 30? What
does this tell you about the reasoning that you used to make your conjecture?

33. Use your answer to 17) to complete the following table:

Interger; n #Partitions; p(n)
1 1
2 2
3
4
5
6
7

34. Find a pattern in the table in Investigation 33, and use it to predict how many partitions of
8 you expect. What kind of reasoning are you using to make this prediction?

35. Find all the partitions of 8, justifying how you know you have found all of the partitions.

36. Does your result in Investigation 35 agree with your conjecture in Investigation 34? What
does this tell you about the reasoning that you used to make your conjecture?

5.4.3 Patterns in the Partition Function

A list of the number of partitions of the first forty-five integers, excluding those you have found
above, appears below. None of your “patterns” really continue. There is no “simple” pattern. It
was not until 1934 that an explicit formula for p(n) was found – two centuries after partitions were
first significantly considered.6

Fill in the missing partitions, being sure to check your results with others in your class.

6This discovery was made by Hans Rademacher (German Mathematician; 1892 - 1969). This formula is
complex, providing, as a consequence, the “simple asymptotic” result that as the integer n gets closer and closer

to infinity the number of partitions of n gets closer and closer to e
π
√

2n
3

4n
√
3

, a result that had been established by

Hardy and Ramanujan in 1918. Given the availability of efficient computer algebra systems, it is somewhat easier

to generate the number of partitions using the generating function
∞∏
n=1

1
1−xn =

(
1

1−x

)(
1

1−x2

)(
1

1−x3

)
· · · , which

is an infinite product (!!) discovered by Euler. See Additional Investigations for more details.
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Interger; n #Partitions; p(n) n p(n) n p(n)
1 1 16 231 31 6,842
2 2 17 297 32 8,349
3 18 385 33 10,143
4 19 490 34 12,310
5 20 627 35 14,883
6 21 792 36 17,977
7 22 1,002 37 21,637
8 23 1,255 38 26,015
9 30 24 1,575 39 31,185
10 42 25 1,958 40 37,338
11 56 26 2,436 41 44,583
12 77 27 3,010 42 53,174
13 101 28 3,718 43 63,261
14 135 29 4.565 44 75,175
15 176 30 5.604 45 89,134

37. In the table, find all integers whose number of partitions is a multiple of 5.

38. If you delete some of the numbers from your answer to Investigation 37 the remaining
numbers fall in a regular pattern, called a partition congruence mod 5 . Describe it
precisely.

39. Do you think that the pattern in Investigation 38 continues forever? Explain.

40. Following the example of Investigation 37 and Investigation 38, find and precisely describe
a partition congruence (mod 7).

41. Following the example of Investigation 37, Investigation 38, and Investigation 40, find and
precisely describe a partition congruence (mod 11).

Ramanujan believed that the only partition congruences were those found above or those
formed by products of 5, 7, and 11; for example, 1925 = 52 × 7 × 11 partition congruences. In
the decades following his death, mathematicians found a few more partition congruences, but
believed that they were isolated, explicable examples. Said mathematician George E. Andrews
(American Mathematician; 1938 - ), one of the foremost international experts on questions in this
area of number theory, “It was really believed that there would probably never be any new major
discoveries regarding partition congruences.”7

5.4.4 Amazing New Discoveries

While working through awkward, non-traditional passages in Ramanujan’s notebooks in 1999-
2000, Ken Ono (American mathematician; - ) made a remarkable breakthrough. Inspired by
Ramanujan’s work he discovered a way to prove that there are partition congruences for every
prime number greater than 3! That is, in addition to 5, 7, and 11 partition congruences, there are
13, 17, 19, 23, . . . partition congruences as well! Moreover, he proved this result while explicitly
finding only one new partition congruence.

7Quoted in [Pet1].
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42. In his research Ken Ono found only one new partition congruence. Yet he was still able to
prove deductively that there are infinitely many partition congruences. How do you think
somebody can prove, deductively, that something exists, or even infinitely many of them
exist, without discovering a procedure that explicitly identifies them?

Subsequently, a Penn State undergraduate student, Rhiannon L. Weaver (; - ), found an
algorithm, or procedure, for generating new, previously undiscovered partition congruences of the
type guaranteed by Ono’s work. She found more than 70,000 new congruences, and her methods
can be programmed to generate additional partition congruences.

43. Is it amazing that an undergraduate made such progress on this problem? Explain.
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Chapter 6

Power Partitions

The principal agent is the object itself and not the instruction given by the teacher. It is the
child who uses the objects; it is the child who is active, and not the teacher.

Maria Montessori (Italian Physician and Educator; 1870 - 1952)

No thought, no idea, can possibly be conveyed as an idea from one person to another. When
it is told it is to the one to whom it is told another fact, not an idea... Only by wrestling with
the conditions of the problem at first hand, seeking and finding his own way out, does [she]he
think.

John Dewey (American philosopher, psychologist and educator; 1859 - 1952)

6.1 Another Story about Gauss

Some of the remarkable accomplishments of the prodigy Gauss have already been told. We start
here with a story of his mathematical precociousness.

It is sometimes reported that as a child of three Gauss corrected errors in his father’s payroll
calculations.1 More often repeated, and more widely accepted, folklore about Gauss involves
busywork punishment Gauss’s elementary school teacher assigned to him. The problem was to
determine the sum of the series

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

Without doing any calculations on his small slate, Gauss wrote the correct answer almost imme-
diately: 5050. How’d he do it?

6.2 Mathematics Manipulatives

Gauss noticed a pattern that can be nicely illustrated by mathematical manipulatives - concrete,
physical objects that are used for hands-on explorations of mathematics and are widely used in
contemporary elementary mathematics classrooms.

1See, e.g., [Bur, p. 510].
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The manipulatives pictured here are small cubes of a uniform size which can be snapped
together; they are sold under the names Multi-link Cubes R© and Unifix Cubes R©. Try to find
some of these manipulatives, or something akin to them, so you can explore using them as you
read.

So that we can provide illustrations, we begin with a smaller version of Gauss’ problem – finding
the sum of the series

1 + 2 + . . .+ 7 + 8.

We can represent each of the summands concretely using the manipulative cubes, as shown on the
left image in Figure 6.1.

Figure 6.1: The numbers 1 - 8 concretely as Multi-link Cubes R©.

Snapping our cubes together, the sum of these numbers is simply the number of cubes in the
“staircase” on the left in Figure 6.2. By itself this does not seem like much help but if you notice
two of these staircases fit together perfectly into one rectangle, as shown on the right in Figure 6.2,
you have essentially solved the problem solved.

1. Determine the number of cubes that make up the rectangle formed by the joined staircases
in Figure 6.2.

2. Determine the sum 1 + 2 + . . . 7 + 8.

Finding the sum of the first eight numbers is not difficult. What is important is the idea
or strategy on which it is based. This idea can be applied to many variations of this problem,
including Gauss’s problem.

3. Use this strategy to show that Gauss was correct: 1 + 2 + 3 + ...+ 98 + 99 + 100 = 5050.

4. What is the sum of the series 1 + 2 + . . .+ 999 + 1000?

5. What is the sum of the series 1 + 2 + . . .+ 100, 000 + 100, 001?
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Figure 6.2: The 1 + 2 + . . .+ 7 + 8 staircases and a pair of 1 + 2 + . . .+ 7 + 8 staircases joined.

6. Can you generalize these results, explaining how you can determine the sum of any series of
the form

1 + 2 + 3 + . . .+ (n− 2) + (n− 1) + n?

Either do so or explain specifically what limitations the method has.

In fact, this method can be generalized to find the sum of any arithmetic series. This general
method should be fairly clear after you determine how to adapt Gauss’s method to the following
examples:

7. Adapt Gauss’s method to determine the sum of the series 1 + 4 + 7 + ...+ 34 + 37 + 40.

8. Similarly, determine the sum of the series 1 + 5 + 9 + ...+ 93 + 97 + 101.

9. Similarly, determine the sum of the series 5 + 8 + 11 + ...+ 21 + 24 + 27.

10. What are the important aspects of each of the series that have been considered here that
enable this method to be adapted to determine the sum of the series? Explain.

Because you have a pile of cubes in front of you, it is an opportune time for a first investigation
of the problem that will occupy much of the rest of this book.

11. Build a large, solid cube from the manipulative cubes (“cubies”). Identify how big it is and
how many cubies it is made up of. Now take it apart. Can you build two smaller, solid cubes
using exactly the same number of cubies, in total, that were used to make up the original
cube? If not, how close can you get?

12. Starting from the same larger cube, can you build three smaller, solid cubes using exactly
the same number of cubies, in total, that were used to make up the original cube?
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13. Can you build four smaller, solid cubes using exactly the same number of cubies, in total,
that were used to make up the original cube?

14. Build a different sized starting cube and repeat Investigation 11 - Investigation 13.

6.3 Proofs Without Words

Many people’s experience with mathematical proof is primarily through their high-school geometry
course, where the dominant proof language is the revered two-column proof. Seen in this light, one
might agree with Sir Arthur Eddington (British Astrophysicis; 1882 - 1944) who said:

Proof is an idol before which the mathematician tortures [her]himself.

One might go even further and agree with Paul Lockhart (American Mathematician and Teacher;
- ) whose chapter “High School Geometry: Instrument of the Devil” in A Mathematician’s Lament
describes as ”treachery” the way proof is considered in high school geometry. He says:

Posing as the arena in which students will finally get to engage in true mathematical
reasoning, this virus [high school geometry] attacks mathematics at its hear, destroying
the very essence of creative retinal argument, poisoning the students’ enjoyment of this
fascinating and beautiful subject, and permanently disabling them from thinking about
math in a natural and intuitive way.2

This quite unfortunate as proof is actually an essential part of what it means to make sense of
mathematics. A more appropriate view of proof is that of Andrew Gleason (American Mathe-
matician; 1921 - 2008) who regularly said:

Proofs really aren’t there to convince you that something is true – they’re there to
show you why it is true,

Another nice view of proofs is from Gian-Carlo Rota (American Mathematician; 1932 - 1999)
who said:

Proof is beautiful when it gives away the secret of the theorem, when it leads us to
perceive the actual and not the logical inevitability of the statement that is proved.

A particularly accessible style of mathematical proof is something mathematicians call Proofs
Without Words. The “staircase proofs” from the previous section were proofs without words.
Another famous example of a proof without words arises from the following problem:
Problem What do you get when you add up the first few odd numbers?

One way to begin to investigate this problem is to collect some data:

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16.

2A Mathematician’s Lament, p. 67.
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15. Do you notice a pattern in this data?

16. Check the next few examples to see if your pattern correctly continues. Does it?

You may now feel comfortable conjecturing that this pattern you have discovered will always
hold. But what is needed is a proof.

One can make staircases as in the previous section. But there is a much more direct, insightful
strategy.

17. Using your manipulative cubies (or square manipulative tiles or even graph paper whose
squares you can color) choose one cubie of one color and three cubies of another color. Can
you arrange them into an appropriate shape so you clearly see 1, 3 and the sum 4?

18. Now choose one cubie of one color, three of another color and five of another color. Arrange
them into an appropriate shape so you clearly see 1, 3, 5, and the sum 9.

19. Explain how this approach can be continued. Clearly explain why each additional added
term will be the correct size and why the resulting shape will always be a square.

20. Can you really “see” this proof? Do you understand why we would call such a thing a proof
without words?

Certainly, this proof lives up to the ideal of proof described by Gleason and Rota. And Lockhart
calls this proof a “divine revelation.” He says, “I feel that this structure was ‘out there’ all along;
I just couldn’t see it. And now I can! This is really what keeps me in the math game – the chance
that I might glimpse some kind of secret underlying truth, some sort of message from the gods.”3

Maria Montessori would appreciate this use of mathematical manipulatives. But they should
not just be considered a learning tool for the young. “Proof without Words” is a semi-regular
column in some widely read mathematics journals, and two full length books containing exemplary
examples of these proofs have been published.4

And proofs without words arise in research level mathematics as well. We can illustrate this
using partitions.

Figure 6.3: Two partitions of 18.

3A Mathematician’s Lament, p. 114.
4The journals are American Mathematical Monthly, Mathematics Magazine, and The College Mathematics

Journal. The books are Proofs without Words and Proofs without Words II both edited by Roger B. Nelsen. All
are published by the Mathematical Association of America.

97



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 6.3 is made up of 18 dots. Count off the rows and you get one partition of 18 : 18 = 8 +
6+3+1. Count off the columns and you get a different partition of 18 : 18 = 4+3+3+2+2+2+1+1.
These two partitions are called conjugate partitions. Figures such as this provide the critical insight
in proving the Rogers-Ramanujan Partition Identity5 which is the intimidating identity

∞∑
i=0

xi
2

(1− x)(1− x2) · · · (1− xi)
=
∞∏
j=0

1

(1− x5j+1)(1− x5j+4)

which involves an infinite series on the left and an infinite product on the right.
In Hardy and Wright‘s classic text [HaWr] diagrams such as that in Figure 6.4 are commonplace

in combinatorial proofs about partitions. And one of the more important results in the theory of
partitions is Euler’s pentagonal number theorem which bears no small relationship to the pattern
in Figure 6.5.

Figure 6.4: Partition diagrams.

Figure 6.5: Pentagonal numbers: 1, 5, 12, 22, . . .

Mathematicians, it seems, would be at home in a progressive, elementary school mathematics
classroom together with young children exploring all sorts of patterns via Multi-link Cubes R©.

5See pp. 736-7 of “Partition Identities – from Euler to the Present”, H.L. Alder, American Mathematical
Monthly, vol. 76, no. 7, Aug.-Sept. 1969, pp. 733-46.
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6.4 Interesting Numbers

Earlier we read about the great G.H. Hardy (English mathematician ; - ) and the prodigy Srini-
vasa Ramanujan (Indian mathematician; 1887 - 1920). It was Hardy that brought Ramanujan
to Oxford to share in his remarkable mathematical abilities. Hardy tells a touching and oft-retold
story of his visit to see Ramanujan in the hospital before his untimely death:

“The cab I rode to the hospital had a particularly dull number: 1729.” “No Hardy,”
Ramanujan replied immediately, “it’s a very interesting number. It is the smallest
number that is expressible as the sum of two cubes in two different ways.”

21. Make a table of the first dozen cubes.

22. Use it to write the number 1729 as the sum of two cubes.

23. Use it to write the number 1729 as the sum of two cubes different from those used in
Investigation 22.

24. Are your solutions to Investigation 22 and Investigation 23 partitions? If so, is there a word
that would describe precisely what type of partitions they are?

25. How remarkable is it that Ramanujan knew this about the number 1729? What does it tell
you about his fluency with numbers?

6.5 Square Partitions

In the story above about 1729 Ramanujan was concerned with both the number of cubes used to
provide a sum of 1729 and the number of ways it could be done. Instead of considering both issues
at once, let us begin by considering the number of ways a given number can be partitioned into
powers.

26. The numbers 1 = 12, 4 = 22, 9 = 32, . . . are called perfect squares. Define the term perfect
square.

27. Make a table of the first 20 perfect squares.

We called 6 = 4 + 1 + 1 a partition of the number 6. Since each of 4, 1, and 1 are squares we
can also write 6 as 6 = 22 + 12 + 12. We will call partitions of this form square partitions.

28. Find and record all of the square partitions of each of the numbers 1− 8.

29. Use your answers to Investigation 6.5 to complete the following table:

Integer, n # Square Partitions, s(n)
1 1
2 1
3 1
4
5
6
7
8
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30. Find a pattern in the number of square partitions and use it to predict the number of square
partitions for the numbers 9 - 12.

31. Find all square partitions of 9.

32. Does your result in Investigation 31 agree with your conjecture in Investigation 30? What
does this tell you about the type of reasoning you used to make this prediction?

33. If you continued to look for patterns in the number of square partitions, how successful do
you think your efforts might be in? How does this compare/contrast with your success in
finding patterns in the number of partitions in the last chapter?

6.6 Cubical Partitions

34. Define cubical partition.

35. Find all cubical partitions of the numbers 1 - 18.

36. Use your answers to Investigation 35 to complete the following table:

Integer, n # Cubical Partitions, c(n)
1 1
2 1
3 1
4
...

18

37. Do you think there is a pattern in the number of cubical partitions that we can discover and
concisely describe? Explain.

Our success with finding patterns in the number of partitions, be it regular, square, or cubical,
has been limited. These so-called partition enumeration problems are indeed quite hard. Many of
them have not been solved after decades of intensive study. So, let us turn to a different problem
suggested by the story of Ramanujan and 1729.

6.7 Minimal Square Partitions

In the story 1729 was special because it was the smallest integer that was the sum of two cubes
in two different ways. In other words, it was the smallest integer that had two different cubical
partitions, each with just two terms.

Every number certainly has a square partition – just add 1 = 12 as many times as you need to
reach the number. For example, 8 = 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12. Because every number
can be written this way, there is nothing to study. On the other extreme, the perfect squares
1, 4, 9, . . . are special for they have square partitions where only one term needs to be “added”:
e.g. 1 = 12, 4 = 22, and 9 = 32. What happens between these extremes? The number 8 can be
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written as the sum of two squares: 8 = 22 + 22. Since 8 is not a perfect square, the minimum
square partition of 8 is 22 + 22 which is a partition with exactly two terms.

38. Can 3 be written as the sum of two squares? If not, what is the minimal square partition of
3?

39. Use your results from questions above to complete the following table:

Integer, n Minimum Square Partition # Terms in the Minimum Square Partition
1 12 1
2 12 + 12 2
3
4 22 1
...

...
...

12

40. Is there a pattern to the number of terms in the minimum square partitions? Explain.

41. What was the largest number of terms that were needed from the minimum square partitions
in the table in Investigation 39?

Let us call the number that answers Investigation 41 Waring’s number for square parti-
tions and denote it by W2. We would like to know if W2 is universal. In other words, we want to
know if every positive integer can be square partitioned using this many or fewer terms.

42. Does 19 have a square partition involving W2 or fewer terms?

43. Does 32 have a square partition involving W2 or fewer terms?

44. Does 57 have a square partition involving W2 or fewer terms?

45. Does 79 have a square partition involving W2 or fewer terms?

46. Does 187 have a square partition involving W2 or fewer terms?

47. Are you becoming confident that every whole number can be square partitioned in W2 or
fewer terms? Explain why or why not.

As early as 1621, the French mathematician Claude Bachet (French Mathematician; 1581
- 1638) suggested that W2 terms were sufficient to square partition every positive integer. He
checked every number up to 325 as evidence in support of the truth of his conjecture.

48. How long do you think it would take to check whether the first 325 positive integers could
be square partitioned by at most W2 terms? Once you did this, would you have a proof that
W2 terms were sufficient to square partition every positive integer? Explain.
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Both Bachet and Fermat believed that the Greek mathematician Diophantus (Greek Math-
ematician; - circa 250 A.D.), one of the prominent historical figures in the history of number
theory, was aware that W2 terms were sufficient. Yet no record of a proof by Diophantus remains,
Bachet never had a full proof and Fermat, writing in the margins of a copy of Diophantus’ book
Arithmetica, wrote that he had a proof but never wrote it down! We’ll see that Fermat had a
history of doing this, much to the chagrin of later mathematicians.

In 1772 Lagrange published a proof that finally demonstrated that W2 terms are enough to
square partition every number. Lagrange acknowledged his indebtedness to the supporting work
of Euler, who had worked on the problem for 40 years! Remarkably, just one year after Lagrange
proved the result, Euler gave a much simpler proof – one that is essentially the proof that is taught
in undergraduate number theory courses.6

49. Complete the statement of Lagrange’s theorem on square partitions below:

Theorem (Lagrange, 1772) Every positive integer can be written as the sum of
squares.

6.8 Waring’s Problem

A natural question is to ask whether a similar result holds for cubical partitions, quartic (fourth
power) partitions, quintic (fifth power) partitions, and so on. This generalization was first explic-
itly considered by Edward Waring (English Mathematician; 1741 - 1793) in 1770 in his book
Meditationes Algebraicae. His conjecture, that a similar result holds for all power partitions, has
become known as Waring’s problem. We explore it for cubical partitions.

50. Use earlier results to complete the following table:

Integer, n Minimum Cubical Partition # Terms in the Minimum Cubical Partition
1 13 1
2 13 + 13 2
3
...

...
...

8 23 1
...

...
...

12

51. Is there a pattern to the number of terms in the minimum cubical partitions? Explain.

52. What was the largest number of terms that were needed from the minimum cubical partitions
in the table in investigation 50?

Just as above, let us call the number we are looking for Waring’s number for cubical
partitions and denote it by W3.

6E.g. Chapter 12 of [Bur].

102



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

53. Do you think that the number you found in investigation Investigation 52 is W3? Explain.

54. Does the number 43 have a cubical partition involving the number of terms considered in
Investigation 52 or fewer?

55. Does the number 81 have a cubical partition involving the number of terms considered in
Investigation 52 or fewer?

56. Does the number 107 have a cubical partition involving the number of terms considered in
Investigation 52 or fewer?

57. Do you think you know what W3 is? Explain.

58. Does the number 23 have a cubical partition involving the number of terms considered in
Investigation 52 or fewer? If not, what is the number of terms in the minimum cubic
partition?

59. Does the number 239 have a cubical partition involving the number of terms considered
in Investigation 52 or fewer? If not, what is the number of terms in the minimum cubic
partition?

60. Do you think you know what W3 is? Explain.

61. Would it surprise you if I told you that it had been proven deductively that out of all infinitely
many positive integers, the numbers 23 and 239 were the only positive integers that required
this many terms to be cubically partitioned? Explain.

It was first proved in 1939 by Leonard Eugene Dickson (American Mathematician; 1874
- 1954) that you will never need more cubes to cubically partition any positive integer than you
needed in investigations Investigation 58 and Investigation 59. So we know exactly what W3 is.7

If it wasn’t for the anomalies 23 and 239, the number you found in Investigation 52 would be W3.

6.9 Solving Waring’s Problem

Waring’s problem concerns higher and higher powers indefinitely and we have seen that the work
of many prominent mathematicians only settled the problem for the powers n = 2, 3. So it might
seem that a solution to Waring’s problem might be difficult if not downright impossible.

In fact, Waring’s problem was “solved” in 1909 by David Hilbert (German Mathematician;
1862 - 1943), one of the twentieth century’s greatest mathematicians. Hilbert solved it not by
finding the identity of all of the Warning numbers Wn, but by proving that there must always
be a number Hn so that every positive integer can be partitioned by Hn or fewer nth powers.
Interestingly, Hilbert’s proof was an existence proof - it proved that these number Hn existed for
every n without telling you what the Hn actually were!

62. Just because one knows theoretically that Hn exists, how does this guarantee that Wn exists
as well?

7See, e.g., “On expressing integers as the sum of cubes and other unsolved number-theory problems,” by Martin
Gardner, Scientific American, Dec. 1973, pp. 118-21.
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63. Give several examples of problems where you can prove that the answers exist without
explicitly finding the answers, or where the answers might be remarkably hard to actually
find.

Encouraged by Hilbert’s existence proof, mathematicians have spent the twentieth century
trying to find the values of the Waring numbers.

64. Fill in the following chart for the first three Waring numbers:

Partitions Waring Number, Wn

Integer W1 =
Square W2 =
Cubic W3 =

65. Use Investigation 64 to make a conjecture about the remaining Waring numbers.

66. It was determined in 1986 that the fourth Waring number is W4 = 19. Does this result agree
with your conjecture in Investigation 65? Do you have any confidence that you might be
able to find a pattern in the Waring numbers considering this new information? Explain.

67. While mathematicians believe they finally have found a pattern, albeit a fabulously com-
plicated one, that gives the value of each Wn, they have been unable to prove it.8 Is this
surprising to you? Explain.

68. What does investigation Investigation 67 suggest to you about how much is known about
expressing the positive integers as sums of other positive integers, what should be one of the
“simplest” parts of mathematics?

6.10 Further Investigations

F1. Determine the 10th and 50th pentagonal numbers.

8The pattern is Wn ≈ 2n + Int(( 3
2

)n)2. This pattern is explored more fully in the section “Euler’s formula for
Waring numbers” in the Additional Investigations.
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Chapter 7

The World’s Greatest
Mathematical Problem

I had this very rare privilege of being able to pursue in my adult life what had been my
childhood dream. I know it’s a rare privilege but, if one can do this it’s more rewarding than
anything I could imagine.

Andrew Wiles (English Mathematics Professor; 1953 - )

7.1 The Pythagorean Theorem

Ask anybody with a high-school education what formula they remember best from their 10-plus
years of mathematics courses, and they are most likely to reply “a2 + b2 = c2.” Often, although
not always, people can tell you that this formula describes the relationship between the legs and
the hypotenuse of any right triangle and is called the Pythagorean theorem.

This important theorem is illustrated in the figures in Figure 7.1 and Figure 7.2, which actually
provide a deductive proof of this theorem.1 Although this theorem is, by name, attributed to the
most famous of all mathematicians – Pythagoras (Greek mathematician; c. 570 BC - c 495
BC) - it turns out to have been well-known by many other ancient cultures. The Babylonian clay
tablet known as Plimpton 322 , which dates to about 1700 B.C., was thought to be a record
of accounting transactions. In 1945 Otto Neugebauer (Austrian mathematician and historian
of Science; 1899 - 1990) and Abraham Sachs (American archeologist and linguist; 1915 - 1983)
wrote the ground-breaking Mathematical Cuneiform Texts which showed that ancient cultures
were much more advanced in mathematics and navigation than we had previously thought. Among
other things, their deciphering of Plimpton 322 showed that the Babylonians knew and used the
Pythagorean theorem more than one-thousand years before the birth of Pythagoras.

1. Explain why the figures that make up Figure 7.2 provide a deductive proof of the Pythagorean
theorem, supplying any missing details as necessary.

1From Discovering Geometry by Michael Serra, Key Curriculum Press, 1997.
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Figure 7.1: Initial set-up for proof without words of the Pythagorean theorem in Figure 7.2

Figure 7.2: Proof without words: The Pythagorean theorem

7.2 Hundreds of Proofs

The Pythagorean theorem is central to mathematics and its culture. As a homage to its importance,
several hundred different proofs of this result have been constructed. In fact, entire books of
different proofs have been assembled, one with over 350 different proofs!2 One notable proof was
found by then Ohio Congressman James A. Garfield (American politician; 1831 - 1881) who
went on to be the 20th President of the United States.

2. Find another proof of the Pythagorean theorem. Understand how this proof works and
rephrase it in your own words, providing all necessary details.

2The Pythagorean Propostion by E.S. Loomis, National Council of Teachers of Mathematics.
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Figure 7.3: Plimpton 322.

7.3 Pythagorean Triples

Although we generally recite the Pythagorean theorem in its algebraic garb, we are no doubt
aware of its clear links to geometry. The Greeks did not have algebra as we would think of it
now; they thought of results like the Pythagorean theorem in purely geometric terms. However,
it is also the case that the Pythagoreans believed that ”all is number.” The connection between
the Pythagorean theorem and special relationships between certain numbers was not lost on the
Greeks.

The numbers 3, 4, 5 are said to form a Pythagorean triple because they are positive integers
that satisfy the Pythagorean theorem:

32 + 42 = 52 since 32 + 42 = 9 + 16 = 25 = 52.

It is likely that you remember such triples from learning about the Pythagorean theorem.

7.3.1 Pythagorean Triples as Partitions

There is a close connection of Pythagorean triples to earlier results we have been considering in
this book. Namely, 32 +42 is a square partition of the square 52. Prior to this, we have been trying
to find patterns among all partitions of a given type. For example, in Section 6.7 of Chapter 6 we
showed that it is possible for every positive integer to be square partitioned by 4 of fewer squares.
That’s fine, but it is also interesting to consider whether there are numbers that can be partitioned
in particularly nice ways.

Partitioning 52 as 12 + 12 + . . . + 12 is quite boring – any number can be square partitioned
in such a way. In discovering Waring’s problem previously, we looked at the minimum partitions.
The number 52 has a much more interesting minimal partition

52 = 32 + 42.

This partition is the simplest possible square partition after the trivial 52 = 52. Thus, 3, 4, and
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5 share a special relationship, a relationship that was studied in detail by ancient cultures. What
other numbers share this special relationship?

7.3.2 Finding Pythagorean Triples

3. If you haven’t already in earlier studies, make a table of the first twenty squares.

4. Use your table to find all Pythagorean triples involving positive integers none of which are
greater than 20.

5. Explain how you know you have found all of the triples.

We’d like to learn as much as we can about Pythagorean triples. What can we find of inter-
est? Well, for one thing, the Pythagorean triple (3, 4, 5) is interesting because the numbers are
consecutive.

6. Based on your search of the table of squares, do you think there is another consecutive
Pythagorean triple? Explain.

7. Denote the number a in a2 + b2 = c2 by the unknown variable x. Suppose (a, b, c) is a
consecutive Pythagorean triple. Express b and c in terms of the unknown x.

8. Use your expressions in Investigation 7 to express the Pythagorean theorem only in terms of
the unknown x. Simplify your equation as much as possible.

9. Solve your equation to determine the unknown x.

10. What do these results tell you about the number of consecutive Pythagorean triples? Does
it tell you this inductively or deductively? Explain.

11. Can a Pythagorean triple consist of all even numbers? Prove your result.

12. Can a Pythagorean triple consist of all odd numbers? Prove your result.

13. How many different Pythagorean triples do you think there are? Explain.

14. The Pythagorean triple (3, 4, 5) is the most basic triple there is. It generates many other
related triples. Find several of these triples, and explain how they are generated by the triple
(3, 4, 5).

15. Prove that there are in fact infinitely many Pythagorean triples in the family generated by
(3, 4, 5).

7.3.3 Characterizing Pythagorean Triples

Because no nontrivial integer can be factored from the numbers in the Pythagorean triple (3, 4, 5)
it is called a primitive Pythagorean triple.

16. Which of your Pythagorean triples in Investigation 4 are primitive?

17. Can all three numbers in a primitive Pythagorean triple be even? Explain.

108



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

18. What possibilities does this leave for the even/oddness of the terms in a primitive Pythagorean
triple?

19. The “next” largest primitive Pythagorean triples are:

(7, 24, 25) (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53) (11, 60, 61).

What does this data suggest about the even/oddness of the terms in a Pythagorean triple?

A beautiful insight - which was known to Euclid, as is shown in his Elements, and Diophantus,
as shown in his Arithmetica, is that the even term in a primitive Pythagorean triple encodes
sufficient information about the triple that it almost allows us to completely determine the other
terms. Namely, they knew that one splits the even term b as b = 2mn and then forms c = m2 +n2.

20. Choose a dozen positive, even integers b ≥ 4 and split them as b = 2mn, choosing positive
integers m,n as you desire. Record your data in a table of the form shown in Table 7.1.

21. For each choice of b,m and n, form c = m2 + n2, adding your data to the table.

22. For each choice of b,m and n can you find a value of a so (a, b, c) is a Pythagorean triple?
Add the appropriate values to the table.

23. Determine an appropriate formula for a in terms of m and n.

24. Prove that your algebraic formulas for a, b and c will always yield a Pythagorean triple.

25. Is every Pythagorean triple in your table primitive?

26. Show that at least six of the primitive Pythagorean triples that appear above arise from the
parameterization you have rediscovered.

a b = 2mn m n c = m2 + n2 Is a, b, c Pythagorean triple?
4 = 2 · 2 · 1 2 1 5 = 22 + 12

6 = 2 · 3 · 1 3 1 10 = 32 + 12

Table 7.1: Data for parameterizing Pythagorean triples.

While the parameterization you rediscovered was known to Euclid and Diophantus, it was not
known until much later that it indeed accounted it for all primitive Pythagorean triples. In fact,
it does. This definitive result was, as far as we know, first established by Fibonacci in his 1225
A.D. text Liber Quadrotorum.
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7.4 Fermat’s Last Theorem

Earlier we worked not just with square partitions but with cubical partitions, as well. There is
certainly a natural analogy. Namely, we can find positive integers a, b, and c such that a2+b2 = c2.
Can we find positive integers a, b, and c such that

a3 + b3 = c3?

If we can, what can we learn about them? After this, there is nothing to stop us. We might
as well ask whether there are solutions to a4 + b4 = c4 and what we can learn about them. And
then a5 + b5 = c5. And so on.

Pierre de Fermat, who we’ve mentioned often in our investigations, asked exactly these ques-
tions. He asked these questions as he studied the Pythagorean Theorem from a translation of the
important text Arithmetica which was written by Diophantus of Alexandria (circa 250 A.D.). Fer-
mat had a habit of writing notes in the margins of this text as he read. He made many important
discoveries that are recorded in this way; including, as we have already noted, observations about
the sums of squares. It is unfortunate, but rarely did he write down proofs of these results. He
was content simply to record these discoveries and share them with various correspondents with
whom he shared mathematical interests.

We are thankful to Fermat’s son Samuel for publishing, in 1670, an edition of Diophantus’ Arith-
metica which contained all of Fermat’s marginalia in an appendix. Had Fermat’s observations not
been so preserved, number theory’s progress might have been set back a century or more. These
results were all subsequently investigated and, on the large, proved to be correct. All, that is,
except his result on solutions to the equation an + bn = cn, which remained mysterious. For this
reason, the result has since been referred to as Fermats Last Theorem.

Around 1637 Fermat scribbled the following (in)famous note in his copy of Arithmetica near
Diophantus’ results on Pythagorean triples:

It is impossible to write a cube as a sum of two cubes, a fourth power as a sum of two
fourth powers, and, in general, any power beyond the second as a sum of two similar
powers. For this, I have discovered a truly wonderful proof, but the margin is too small
to contain it.

Fermat was claiming that Pythagorean triples were the beginning and end of the line - there
were no other similar results. That is, no matter how hard one looked, one would never find
nontrivial, whole number solutions to the Fermat equation an + bn = cn when n ≥ 3. This
result has become known as Fermat’s last theorem.

7.4.1 Fermat’s Last Theorem for n = 3

Having taken care of the Pythagorean triples, we would like to move on to the higher powers that
Fermat mentioned in his marginalia.

In Investigation Section ?? of Chapter ??, we saw that there are only two cubical partitions of
the cube 8: 23 and 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13. So 23 cannot be partitioned into the sum
of two cubes.

27. Can the cube 27 = 33 be partitioned into the sum of two cubes? Prove your result.
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Figure 7.4: Pierre de Fermat.

28. Can the cube 64 = 43 be partitioned into the sum of two cubes? Prove your result.

29. Can the cube 125 = 53 be partitioned into the sum of two cubes? Prove your result..

30. Can the cube 216 = 663 be partitioned into the sum of two cubes? Prove your result.

31. Can the cube 343 = 73 be partitioned into the sum of two cubes? Prove your result.

32. Can the cube 512 = 83 be partitioned into the sum of two cubes? Prove your result.

33. Do you think that there is any cube that can be partitioned into the sum of two other cubes?
Explain.

In fact, by 1750 Euler had proven that Fermat was correct in the special case when n = 3:
there are no positive integers which solve the Fermat equation a3 + b3 = c3.

Seeing that one cannot ever cubically partition a cube into the sum of two cubes, it is natural
to wonder whether three cubes might occasionally suffice. They can.

34. Show that 63 can be partitioned into the sum of three cubes.

7.4.2 Prizes for Solving Fermat’s Last Theorem

Over time many prizes have been offered for solutions to Fermat’s last theorem. For example, an
English doctor named Paul Wolfskehl (German Doctor and Mathematician; 1856 - 1906), who
became afflicted with a debilitating case of multiple sclerosis, credits the intrigue of Fermat’s last
theorem with keeping him from committing suicide. He bequeathed a large trust to be awarded
to the first person to actually solve this problem.3

3For a detailed discussion see “Paul Wolfskehl and the Wolfskehl Prize,” by Klaus Barner, Notices of the American
Mathematical Society, vol. 44, no. 10, November 1997, pp. 1294-1303.
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So numerous were the crackpot “solutions” that the work of judging these solutions over-
whelmed the mathematicians in charge of the award. The noted number theorist Edmund Lan-
dau (German Mathematician; 1877 - 1938) had postcards printed which read, “Dear Sir of Madam:
Your attempted proof of Fermat‘s theorem has been received and is herewith returned. The first

mistake is on page , line .” Landau would give the “solutions” to his students to

fill in the missing numbers.4

7.4.3 Fermat’s Last Theorem for n = 4

After the integers (power 1), the squares (power two), and the cubes (power three) comes the
quartics, numbers of the form m4.

35. Make a table of the first dozen quartics.

36. Can any of these quartics be partitioned into the sum of two other quartics? Explain in
detail.

37. Do you believe, as Fermat claimed, that no quartic can be partitioned into the sum of two
quartics? Explain in detail.

In fact, Fermat himself gave a deductive proof in the special quartic case n = 4: there are no
nontrivial, positive integers which solve the Fermat equation a4 + b4 = c4. This proof was given
in the margins of one of his texts, just like the statement of the full last theorem. Only this time
the margin was large enough to contain the proof!5

38. Why do you think Fermat chose to prove the special n = 4 case of his Last Theorem when
he believed he had a proof of the more general result which includes the n = 4 case as a
consequence?

7.4.4 Euler’s Conjecture

39. Can the quartic 2401 = 74 be partitioned into the sum of three quartics? Prove your result.

40. Can the quartic 4096 = 84 be partitioned into the sum of three quartics? Prove your result.

41. Can the quartic 6561 = 94 be partitioned into the sum of three quartics? Prove your result.

42. Do you think that there is any quartics that can be partitioned into the sum of three other
quartics? Explain.

43. Use the following computations, done with the help of the mathematical software like Wolr-
fram Alpha, to show that the quartic 3534 can be partitioned as the sum of four quartics:

3534 = 15, 527, 402, 881

3154 = 9, 845, 600, 625

2724 = 5, 473, 632, 256

1204 = 207, 360, 000.

4From Elementary Number Theory by Underwood Dudley, W.H. Freeman and Co., p. 136.
5“Fermat’s Last Theorem and Modern Arithmetic,” by K.A. Ribet and B. Hayes, American Scientist , vol. 82,

March-April 1994, pp. 144-56.
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44. Use your observations in this section to complete the following conjecture due to Euler:

Conjecture (Euler; 1769) The nth power mn of the positive integer m cannot be partitioned into

the sum of other nth powers, in a non-trivial way, using terms.6

45. If Fermat’s last theorem were known to be true, would the truth of Euler’s conjecture follow
as a consequence? Explain in detail, using specific exponents to illustrate the connections
and/or differences.

46. If Euler’s conjecture were known to be true, would the truth of Fermat’s last theorem follow
as a consequence? Explain in detail, using specific exponents to illustrate the connections
and/or differences.

7.4.5 Solutions to Special Cases of Fermat’s Last Theorem

Since its statement, there was no progress in settling Euler’s conjecture. The same is not true
for Fermat’s Last Theorem. As we said, Euler and Fermat had settled the n = 3 and n = 4
cases, respectively. Many decades later, in the 1820’s, the French mathematician Legendre and
the German mathematician J.P.G. Lejeune Dirichlet (German mathematician; 1805 - 1859)
gave proofs of the n = 5 case. Dirichlet later gave a proof for n = 14 as well, partially rescuing his
doomed efforts to prove the n = 7 case.

A remarkable breakthrough came in the 1820’s when an unknown M. Leblanc proved that Fer-
mat’s last theorem holds whenever the exponent n is a special type of prime. These special primes
are quite numerous, possibly even infinite, and include all of the primes 2, 3, 5, 11, 23, 29, 41, 53, 83, 89.
M. Leblanc, whose identity was unknown, became an immediate cause célébre!

M. Leblanc was, in fact, Sophie Germain (French mathematician; 1776 - 1831), a French
woman who was not allowed to study at the universities because of her sex, but who had been
secretly securing and studying notes from the classes of France’s finest mathematicians. So re-
markable were her results that the community of mathematics had no option but to except her
into its circles. Said Gauss, considered one of the greatest mathematicians of all time,

When a person of the sex which, according to our customs and prejudices, must en-
counter infinitely more difficulties than men... succeeds nevertheless in surmounting
these obstacles and penetrating the most obscure parts of [number theory], then with-
out doubt she must have the noblest courage, quite extraordinary talents and superior
genius.

The special prime exponents which were at the heart of Germain’s results are called Germain
primes in her honor.

Progress on special cases of Fermat’s last theorem continued.
Then, at a 1 March, 1847 meeting of the Paris Academy, the French mathematician Gabriel

Lame (French mathematician and engineer; 1795 - 1870) announced that he had proven Fermat’s
Last Theorem. However, there was immediate controversy about the validity of the proof. There
appeared to be gaps in the proof. The German mathematician Ernst Kummer (German math-
ematician; 1810 - 1893) not only found explicit examples where Lame’s proof broke down, but he

6See, e.g., History of the Theory of Numbers, vol. II, by L.E. Dickson, New York, 1934.
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was also able to repair the proof for infinitely many exponents, particularly those exponents that
are now known as regular primes. Alas, there were still infinitely many exponents that remained
to be checked.

As noted above, awards were offered for solutions to Fermat’s last theorem. Later, computers
helped push the search for counter-examples to exponents n > 4, 000, 000.7 Yet, hundreds of years
of searching left both Fermat’s last theorem and Euler’s conjecture unblemished – no counter-
examples had been found – but unsolved, as well.

47. Given the long, fruitless search for counter-examples, do you suppose that mathematicians
were content with the apparent truth of these conjectures? Explain.

7.4.6 A Breakthrough

48. Complete the following quintic partition of the quintic 1445 into a sum of four terms using
the computations below:

m5 + 845 + 1105 + 1335 = 1445

where

1445 = 61, 917, 364, 224

1335 = 41, 615, 795, 893

845 = 4, 182, 119, 424.

The result in Investigation 48 was discovered by L.J. Lander (; - ) and T.R Parkin (; - )
in 1966.8

49. How do you think Lander and Parkin discovered the result?

50. What does the result tell us about Fermat’s Last Theorem? What does it tell us about
Euler’s conjecture?

In 1988 Noam D. Elkies (American Mathematician and Chess Master; 1966 - ) discovered9

that
2, 682, 4404 + 15, 365, 6394 + 18, 796, 7604 = 20, 615, 6734.

In announcing this result, Elkies also noted that Roger Frye (; 1940 - ) found the smallest
such quartic partition of a quartic into a sum of three terms:

95, 8004 + 217, 5194 + 414, 5604 = 422, 4814.

51. What do these results tell us about Fermat’s Last Theorem? What do they tell us about
Euler’s conjecture?

7See Ribet and Hayes article referenced above.
8“Counterexamples to Euler’s Conjecture on Sums of Like Powers”, L.J. Lander and T.R. Parkin, Bulletin of

the American Mathematical Society, vol. 72, 1966, pp. 1079.
9“On A4 + B4 + C4 = D4”, by N.D. Elkies, Mathematics of Computation, vol. 51, no. 184, October 1988, pp.

825-835.
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52. Why didn’t I leave out one of the terms and have you (re-)discover Elkies’ or Frye’s results
as I did in Investigation 48 above?

53. How do you think Elkies and Frye discovered their results? Explain.

In fact, Elkies and Frye relied on increasingly sophisticated mathematical developments in an-
alytic number theory that had been building for some thirty years. These developments include
elliptic curves, modular forms, and Galois representations and are the result of the dedicated work
of many contemporary mathematicians over many decades, including: Yutaka Taniyama (Jape-
nese mathematician; 1927 - 1958), Goro Shimura (Japanese mathematician; 1930 - ), Elkies,
Frye, Robert Langlands (Canadian mathematician; 1936 - ,) Gerd Faltings (German mathe-
matician; 1954 - ), Jean-Pierre Serre (French mathematician; 1926 - ), John Coates (Australian
mathematician; 1945 - ), Peter Sarnak (South African mathematician; 1953 - ), Nicholas Katz
(American mathematician; 1943 - ), Karl Rubin (American Mathematics Professor; 1956 - ),
Barry Mazur (American mathematician; 1937 - ), Ken Ribet (American mathematician; 1948
- ), Richard Taylor (English mathematician; 1962 - ), and lastly Andrew Wiles. While progress
was certainly being made, few held out hope that a proof of Fermat’s last theorem was within
reach.

7.4.7 A Truly Remarkable Proof

On 20 June, 1993 Andrew Wiles, a Professor of Mathematics at Princeton University, was sched-
uled to give three hour-long lectures over three consecutive days at an international mathematics
conference at Cambridge University in England. Wiles was a noted mathematician who had in-
creasingly withdrawn from research circles over the prior seven years, publishing only a few papers
and risking the loss of important research funding.

Yet his first lecture sped his ascent back into the mathematical limelight. He had, in virtual
isolation, made groundbreaking contributions to analytic number theory. Emails and phone calls
circled the world - ”Come to Cambridge to hear Wiles’ lectures; something big is up.” The crowds
grew the second day and packed the lecture hall the third day. As his third lecture neared its
conclusion, Wiles proceeded through the final few logical arguments that completed the proof of his
major result - a result which had a remarkable consequence. Namely, among other things, his work
established the truth of Fermat’s Last Theorem. Wiles completed his proof, wrote the statement of
Fermat’s last theorem onto the chalkboard, and then modestly turned to the astonished audience
to modestly announce, ”I think I’ll stop here.”10

The amazing news was instantly circulated world-wide via email and phone messages. Wiles’
picture and a lengthy story graced the front page of the next day’s New York Times. Stories
appeared in Time, Newsweek , and print media throughout the world. Wiles was named one of the
year’s “25 Most Interesting People” by People Magazine.

But the perfect ending to the enigmatic theorem of Fermat was yet to unfold. For like the fate
that befell Lame and so many other mathematicians throughout its near 350-year history, Wiles
200-page proof succumbed to a logical defect as it was checked by experts. For months he struggled,
finally breaking his silence with a 4 December, 1993 email to the mathematical community:

10The story briefly described here is captured powerfully in the Nova documentary The Proof [LySin], which is
highly recommended, and the corresponding trade book Fermat’s Enigma: The Epic Quest to Solve the World’s
Greatest Mathematical Problem [SinLy].
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Figure 7.5: The end of Andrew Wiles’ third lecture.

In view of the speculation on the status of my work on the Taniyama-Shimura conjec-
ture and Fermat’s Last Theorem I will give a brief account of the situation. During
the review process a number of problems emerged, most of which have been resolved,
but one in particular that I have not settled. The key reduction of (most cases of)
the Taniyama-Shimura conjecture to the calculation of the Selmer group is correct.
However, the final calculation of a precise upper bound for the Selmer group in the
semistable case (of the symmetric square representation associated to a modular form)
is not yet complete as it stands. I believe that I will be able to finish this in the near
future using the ideas explained in my Cambridge lectures.

But Wiles was unable to fill this gap.
Desperate and in the position of ”doing mathematics in that kind of rather over-exposed way

[which] is certainly not my style and I have no wish to repeat,” Wiles enlisted the help of his
former student Richard Taylor.

On 3 April, 1994 another email stunned the world. It announced that Noam Elkies had found
a counter-example to Fermat’s Last Theorem with exponent n > 100, 000, 000, 000, 000, 000, 000 In
other words, not only was Fermat wrong, but Wiles’ gap must be fatal – his proof was incorrect.
After a few days of turmoil, it became clear that the email was the result of an April Fools’ Day
joke from the Canadian mathematician Henri Darmon (Canadian mathematician; 1965 - ) which
had gotten out of hand, spreading like a computer virus.

Wiles and Taylor made no progress through the summer. But on Monday, 19 September, 1994,
the breakthrough came. In Wiles’ own words:

I was trying to convince myself that it didn’t work, just seeing exactly what the problem
was. Suddenly, totally unexpectedly, I had this incredible revelation. I, I realized what
was holding me up was exactly what would resolve the problem I’d had in my Iwasawa
theory attempt three years earlier. It was the most, the most important moment of
my working life. It was so indescribably beautiful, it was so simple and so elegant
and I just stared in disbelief for twenty minutes. Then during the day I walked round
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the department, I’d keep coming back to my desk and looking to see if it was still
there. It was still there... My original approach to the problem from three years before
would make it exactly work. So out of the ashes seemed to rise the true answer to the
problem. So the first night I went back and slept on it, I checked through it again the
next morning and by 11 o’clock I was satisfied. I went down and told my wife, ”I’ve
got it, I think I’ve got it, I’ve found it.” It was so unexpected, she, I think she thought
I was talking about a children’s toy or something, said, ”Got what?” And I said, ”I’ve
fixed my proof, I, I’ve got it.” 11

On 25 October, 1994 the world was treated to the final email in history’s chapter of Fermat’s
last theorem. It noted,

As of this morning, two manuscripts have been released: “Modular Elliptic Curves and
Fermat’s Last Theorem, by Andrew Wiles and “Ring Theoretic Properties of Certain
Hecke Algebras,” by Richard Taylor and Andrew Wiles. The first one (long) announces
a proof of, among other things, Fermat’s last theorem, relying on the second one (short)
for one crucial step. . . While it is wise to be cautious for a little while longer, there is
certainly reason for optimism.

In fact, these two articles make up an entire issue (vol. 142, 1995) of the prestigious Annals of
Mathematics, the first article on pages 443-551 and the second on pages 553-72.

7.4.8 Perspectives on These Historic Accomplishments

54. The title of this chapter is ”The World’s Greatest Mathematics Problem.” Which problem do
you think this refers to: The Pythagorean theorem, Pythagorean triples, partitions, Euler’s
conjecture, or Fermat’s Last Theorem? Explain.

55. Suppose I had asked you to write a brief essay on the working life of a mathematician when
you first began this course and to rewrite it having worked through this book, watched the
video “The Proof,” and completed the other mathematical investigations from this course.
How might your essays have compared? In other words, are there important ways that your
views have been reinforced or have been changed?

56. As a current student of mathematics, a prospective parent, and a citizen of the technology-
driven twenty-first century, are there lessons that you can take and use from the story of
Fermat’s Last Theorem?

57. Wiles spent eight years working in virtual isolation on Fermat’s last theorem. What do you
think about his efforts? Do his efforts compare with the efforts of professionals in other
areas? Explain how they do or why they do not.

11[LySin].

117



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

7.5 Further Investigations

7.5.1 Parity of Primitive Pythagorean Triples

In and around Investigation 18 the question of the parity - even or odd - the terms in primitive
Pythagorean triples is investigated. A proof that there is only one possible parity for the c term
is outlined here.

F1. Square several odd numbers. What is the remainder of when this square is divided by 8?

F2. Using the fact that any odd number can be written as 2n+ 1 where n is an integer, prove
self-evident conjecture in Investigation 1.

F3. If both a and b are odd what is the remainder when a2 + b2 is divided by 4? Explain.

F4. Prove that a2+b2 cannot be the square of another integer, proving that there is no primitive
Pythagorean triple with a, b odd and c even.

7.5.2 Euclid’s Parameterization for Pythagorean Triples

The splitting b = 2mn and formation of c = m2 + n2 to parameterize Pythagorean triples is not
given much motivation above. It is not complicated to do so with some reasonable algebra skills,
as is outlined here.

F5. Since we want a2 + b2 = c2, b2 = c2 − a2. Factor the right-hand side of this equation.

F6. Explain why this allows one to conclude

c+ a

b
=

b

c− a
.

Since c, a, b are integers, c+ab can be reduced to its lowest terms - call this reduced fraction m
n .

F7. Explain why c−a
b = n

m .

F8. Evaluate the sum c+a
b + c−a

b to demonstrate

c

b
=
m2 + n2

2mn
.
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

101 102 103 104 105 106 107 108 109 110 

111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 

131 132 133 134 135 136 137 138 139 140 

141 142 143 144 145 146 147 148 149 150 

151 152 153 154 155 156 157 158 159 160 

161 162 163 164 165 166 167 168 169 170 

171 172 173 174 175 176 177 178 179 180 

181 182 183 184 185 186 187 188 189 190 

191 192 193 194 195 196 197 198 199 200 

201 202 203 204 205 206 207 208 209 210 

211 212 213 214 215 216 217 218 219 220 

221 222 223 224 225 226 227 228 229 230 

231 232 233 234 235 236 237 238 239 240 

241 242 243 244 245 246 247 248 249 250 
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