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Preface: Notes to the Explorer

Yes, that’s you - you’re the explorer.
“Explorer?”
Yes, explorer. And these notes are for you.
We could have addressed you as “reader,” but this is not a traditional book. Indeed, this book

cannot be read in the traditional sense. For this book is really a guide. It is a map. It is a route of
trail markers along a path through part of the world of mathematics. This book provides you, our
explorer, our heroine or hero, with a unique opportunity to explore this path - to take a surprising,
exciting, and beautiful journey along a meandering path through a mathematical continent named
the infinite. And this is a vast continent, not just one fixed, singular locale.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will not
be following rules or algorithms, nor will you be parroting what you have been dutifully shown in class
or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture followed
by dozens of exercises that closely mimic illustrative examples. Rather, after a brief introduction
to the chapter, the majority of each chapter is made up of Investigations. These investigations are
interwoven with brief surveys, narratives, or introductions for context. But the Investigations form
the heart of this book, your journey. In the form of a Socratic dialogue, the Investigations ask you
to explore. They ask you to discover the mathematics that is behind music and dance. This is not
a sightseeing tour, you will be the active one here. You will see mathematics the only way it can be
seen, with the eyes of the mind - your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling if
you are not forced to approach it in a mindless, stress-invoking, mechanical manner. In this journey you
will find the mathematical world to be quite different from the static barren landscape most textbooks
paint it to be. Mathematics is in the midst of a golden age - more mathematics is discovered each
day than in any time in its long history. Each year there are 50,000 mathematical papers and books
that are reviewed for Mathematical Reviews! Fermat’s Last Theorem, which is considered in detail in
Discovering that Art of Mathematics - Number Theory, was solved in 1993 after 350 years of intense
struggle. The 1$ Million Poincaŕe conjecture, unanswered for over 100 years, was solved by Grigori
Perleman (Russian mathematician; 1966 - ). In the time period between when these words were
written and when you read them it is quite likely that important new discoveries adjacent to the path
laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish high
school after 10 - 12 years of mathematics instruction and have no idea that mathematics is beautiful.
How can this happen? Well, they were busy learning mathematical skills, mathematical reasoning,
and mathematical applications. Arithmetical and statistical skills are useful skills everybody should
possess. Who could argue with learning to reason? And we are all aware, to some degree or another,
how mathematics shapes our technological society. But there is something more to mathematics than
its usefulness and utility. There is its beauty. And the beauty of mathematics is one of its driving
forces. As the famous Henri Poincaŕe (French mathematician; 1854 - 1912) said:
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The mathematician does not study pure mathematics because it is useful; [s]he
studies it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as both a liberal art and as a science. As a powerful science,
mathematics shapes our technological society and serves as an indispensable tool and language in
many fields. But it is not our purpose to explore these roles of mathematics here. This has been done
in many other fine, accessible books (e.g. [COM] and [TaAr]). Instead, our purpose here is to journey
down a path that values mathematics from its long tradition as a cornerstone of the liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was rescued and preserved in monasteries. Knowledge was
categorized into the classical liberal arts and mathematics made up several of the seven categories.1

During the Renaissance and the Scientific Revolution the importance of mathematics as a science
increased dramatically. Nonetheless, it also remained a central component of the liberal arts during
these periods. Indeed, mathematics has never lost its place within the liberal arts - except in the
contemporary classrooms and textbooks where the focus of attention has shifted solely to the training
of qualified mathematical scientists. If you are a student of the liberal arts or if you simply want to
study mathematics for its own sake, you should feel more at home on this exploration than in other
mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And more.
In your exploration here you will see that mathematics is a human endeavor with its own rich history
of human struggle and accomplishment. You will see many of the other arts in non-trivial roles:
dance and music to name two. There is also a fair share of philosophy and history. Students in the
humanities and social sciences, you should feel at home here too.

Mathematics is broad, dynamic, and connected to every area of study in one way or another.
There are places in mathematics for those in all areas of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

It is my hope that your discoveries and explorations along this path through the infinite will help you
glimpse some of this beauty. And I hope they will help you appreciate Russell’s claim that:

. . . The true spirit of delight, the exaltation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

Finally, it is my hope that these discoveries and explorations enable you to make mathematics a real
part of your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to
be assimilated as a part of daily thought, and brought again and again before the
mind with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have served as
beacons to people who have explored the continents of mathematics throughout history.

1These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and the

trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy.
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Navigating This Book

Before you begin, it will be helpful for us to briefly describe the set-up and conventions that are
used throughout this book.

As noted in the Preface, the fundamental part of this book is the Investigations. They are
the sequence of problems that will help guide you on your active exploration of mathematics. In
each chapter the investigations are numbered sequentially. You may work on these investigation
cooperatively in groups, they may often be part of homework, selected investigations may be solved
by your teacher for the purposes of illustration, or any of these and other combinations depending on
how your teacher decides to structure your learning experiences.

If you are stuck on an investigation remember what Frederick Douglass (American slave, abo-
litionist, and writer; 1818 - 1895) told us: “If thee is no struggle, there is no progress.” Keep thinking
about it, talk to peers, or ask your teacher for help. If you want you can temporarily put it aside and
move on to the next section of the chapter. The sections are often somewhat independent.

Investigation numbers are bolded to help you identify the relationship between them.
Independent investigations are so-called to point out that the task is more significant than the

typical investigations. They may require more involved mathematical investigation, additional re-
search outside of class, or a significant writing component. They may also signify an opportunity for
class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections between
mathematics and other fields - especially the liberal arts. Whether you complete a few of the connec-
tions of your choice, all of the connections in each section, or are asked to find your own connections
is up to your teacher. But we hope that these connections will help you see how rich mathematics’
connections are to the liberal arts, the fine arts, culture, and the human experience.

Further investigations, when included are meant to continue the investigations of the area in
question to a higher level. Often the level of sophistication of these investigations will be higher.
Additionally, our guidance will be more cursory.

Within each book in this series the chapters are chosen sequentially so there is a dominant theme
and direction to the book. However, it is often the case that chapters can be used independently of
one another - both within a given book and among books in the series. So you may find your teacher
choosing chapters from a number of different books - and even including “chapters” of their own that
they have created to craft a coherent course for you. More information on chapter dependence within
single books is available online.

Certain conventions are quite important to note. Because of the central role of proof in mathe-
matics, definitions are essential. But different contexts suggest different degrees of formality. In our
text we use the following conventions regarding definitions:

• An undefined term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term that
will be defined a bit later; or an important non-technical term that may be new to the reader,
suggesting a dictionary consultation may be helpful.
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• An informal definition is italicized and bold faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context. Often
this means that a formal definition at this point would take the discussion too far afield or
be overly pedantic.

• A formal definition is bolded the first time it is used. This is a formal definition that
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a biographical name appears it is bolded and basic biographical
information is included parenthetically to provide some historical, cultural, and human connections.

4



CHAPTER 1

A little Introduction

1. Mathematics, Music and Art

Mathematics is music for the mind; music is mathematics for the soul.
Anonymous

This is a not a regular textbook. This is a book which makes you think and write and discuss. I
hope you read the “Notes to the explorer” preface.

Before we start diving into a topic, we want to think about the connection of mathematics and
the arts.

1. What is mathematics? Find a good definition.
2. What is music? Find a good definition.
3. What is art? Do you think mathematics is an art? Why or why not?

4. Classroom Discussion: Compare your definitions with your classmates and your professor and
agree on definitions for mathematics, music, dance and art.

Mathematics is everywhere in art, in particular in music even if the artists are not aware of it. This
book will show many different areas of music that are built on concepts of mathematics. Discovering
the mathematics will deepen your appreciation – not only of the mathematics but also of the artform
itself.

5. How often do you listen to music?
6. Why do you think music is so important for you? For humans in general?
7. What is your favorite piece of music? Why?
8. Analyze your piece of music: can you find any structure? Consider rhythm, melody, general

format, chords, lyrics, loudness, ...

9. Classroom Discussion: Share the structure that you found in your piece with your classmates.
Are there any common structures? Any common themes? Do you see any mathematics yet?

2. Some Standard Music Notation

You can skip this section for the first read, just know that it is there in case you need it.
On the staff, see Figure 1.1, each line and each space between lines corresponds to one of the note

names:
C,D,E, F,G,A,B,C, · · · .

The top part of the staff is for the right hand of the pianist while the bottom staff is for the left
hand. The notation for both hands is different, since the keys you play with your left hand have lower
sounds than the ones you play with your right hand! Now the notes on the staff in Figure 1.1 are only
for the white keys of the piano. Here is how you notate the black keys: If you want a note for the key
to the top right of F , which is called F sharp you write a # in front of the note. See Figure 1.2. If
you want a note for the key to the top left of, say E, which is called E flat , you write a b in front
of the note. The # and the b are called accidentals. In this way many keys have two names, e.g.
F# = Gb. You can find details about the history and details of tuning in Chapter 4.

5
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Figure 1.1. Standard Music Notation

Figure 1.2. Accidentals

6



CHAPTER 2

Exploration of Rhythms and Pascal’s Triangle

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made of ideas. His patterns, like the painter’s
or the poet’s must be beautiful; the ideas, like the colors or the words, must fit together in
a harmonious way.

G.H. Hardy (English Mathematician; 1877 - 1947)

1. Counting Rhythms

In this section we will explore rhythms from a mathematical point of view. A rhythm can provide
structure to a musical piece but it is also possible that a piece of music consist only of rhythms played,
for instance, by drums. There are many interesting questions we could ask about the structure of
rhythms and how to combine several of them, but this section will focus on “how many rhythms there
are”. To begin our inquiry we need to be able to notate rhythms and develop a common language.

1. Listen to the rhythm Son at https://www.youtube.com/watch?v=SnjqxgtLJlA and https:

//www.youtube.com/watch?v=UG9NacR29zM. Can you notate the rhythm somehow? You
can use the standard musical notation, but find at least one other way of representing the
rhythm. Imagine you want a child to be able to play the rhythm, how would you write it?

2. Classroom Discussion: Compare the different ways of notations for rhythms. Which one seems
the best to you? Why?

3. Classroom Discussion: Discuss how finding a notation for a rhythm is connected with mathe-
matics? Why would this be part of a mathematics class?

The rhythm you just heard is called Son or 3/2 clave. It is the basic rhythm of salsa music and
as such known everywhere in the world. We will use a binary notation for rhythms, where we write
a 1 for a beat and a 0 for an off-beat. In this notation the first part of the Son rhythm looks like
10010010. Why is this rhythm so special? According to Godfried Toussaint [13], Professor at McGill
University, Montreal, “it is one of the most famous rhythms in the world. In Cuba it goes by the
name tresillo and in the USA it is often called Habanera. It is also found widely in West African
traditional music.” Toussaint has done a lot of work on comparing rhythms and looking at them from
a geometric point of view.

4. Independent Investigation: The first part of Son consists of 3 beats and 5 off-
beats on a total of 8 counts. We first would like to know how many possible rhythms
there are given 3 beats (and 5 off-beats) on 8 counts. This will be our first mathematical
exploration. Work in groups and take your time. Document your work, reason why
attempts worked or didn’t work. Consider for instance the patterns if you have 1,2 or 3
beats on 3 counts, and 1,2,3 or 4 beats on 4 counts. Have fun!

5. Classroom Discussion: Compare your results from the independent investigation: how many
rhythms are possible given 8 counts and 5 beats?

7
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There are many different ways to approach this problem and you found at least one of them. The
next questions will help you to find other strategies and connect the different approaches with each
other.

6. Given 2 counts, how many ways are there to have a rhythm with 1 beat?
7. Given 2 counts, how many ways are there to have a rhythm with 2 beats?
8. Given 3 counts, how many ways are there to have a rhythm with 1 beat?
9. Given 3 counts, how many ways are there to have a rhythm with 2 beats?

10. Given 3 counts, how many ways are there to have a rhythm with 3 beats?
11. Given 4 counts, how many ways are there to have a rhythm with 1 beat?
12. Given 4 counts, how many ways are there to have a rhythm with 2 beats?
13. Given 4 counts, how many ways are there to have a rhythm with 3 beats?
14. Given 4 counts, how many ways are there to have a rhythm with 4 beats?
15. Can you see a pattern in the above results? Try playing with the numbers. Fill in the next ones

using the pattern you found and then check them.
16. Given 5 counts, how many ways are there to have a rhythm with 1 beat?
17. Given 5 counts, how many ways are there to have a rhythm 2 beats?
18. Given 5 counts, how many ways are there to have a rhythm 3 beats?
19. Given 5 counts, how many ways are there to have a rhythm 4 beats?
20. Given 5 counts, how many ways are there to have a rhythm 5 beats?

21. Independent Investigation: Take your notebook and write the above numbers in
a triangle (pyramid), the rows corresponding to the number of counts and the “columns”
corresponding to the number of beats. Can you see a pattern now? Describe the sym-
metries you observe. Think about what happens if you have no beats at all – how many
rhythms are there?

2. Pascal’s Triangle

The pattern that emerges is called Pascal’s triangle . It becomes a full symmetric triangle when
you add on the left side of the triangle the following numbers:

22. Given 2 counts, how many ways are there to have a rhythm with 0 beats?
23. Given 3 counts, how many ways are there to have a rhythm with 0 beats?
24. Given 4 counts, how many ways are there to have a rhythm with 0 beats?
25. Given 5 counts, how many ways are there to have a rhythm with 0 beats?

Now, given one row of the triangle, how do you find the next row without having to count out
the number of rhythms? You can fill your numbers into the empty triangle in Figure 2.1 to help you
find the pattern.

26. Classroom Discussion: What are the patterns you find in Pascal’s triangle? How can you use
patterns to find the next rows without having to count rhythms?

The triangle was studied by Blaise Pascal (French Mathematician; 1623 - 1662), although it had
been described centuries earlier by the Yanghui (Chinese Mathematician; 1238 - 1298) and Omar
Khayym (Persian Astronomer and Poet; 1048 - 1131). It is therefore known as the Yanghui triangle
in China. See Figure 2.2 for pictures of Pascal, Yanghui and Khayam.

8
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Figure 2.1.

Figure 2.2.

Back to our question: how many rhythms there are for 8 counts and 3 beats. If you ask mathe-
maticians, they might suggest to compute (

8

3

)
=

8!

3!5!
1

Here the exclamation mark stands for factorial, which you compute in the following way: 8! =
1 · 2 · 3 · 4 · · · 8.

Wow, that looks really complicated! Lets try to understand this for our example. If we have 8
counts and 3 beats then we have to compute

(
8
3

)
= 8!

3!5! = 6·7·8
3·2·1 = 56. So the mathematician claims

1Mathematicians write for entry (k + 1) in row (n + 1) in Pascal’s triangle:
(n
k

)
and say n choose k. They have a

general equation to compute the entries: (n
k

)
=

n!

k!(n− k)!
.

Mathematicians don’t usually think about beats and rhythms, for them n choose k computes the number of possibilities

to choose sets of k objects out of n objects. But we can think of choosing k positions for beats out of 8 available counts.

9
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there are 56 different rhythms. Does 56 agree with your answer from before? The following investi-
gations will help us understand why this computation works.

Since we have 8 counts, we have 8 places where we can place the 3 beats. If a problem seems too
hard, mathematicians like to make it easier. For our example, we will ignore for a moment that the
second beat should be played after the first beat.

27. In how many places can you put the first beat?
28. After choosing your first beat, how many places are left for the second beat?
29. After choosing the second beat, how many places are left for the third beat?
30. How can you use these numbers to find the number of possibilities to place all three beats?

We have to be careful, because if you count this way your first beat might actually sound after
the second beat, and that would not be appropriate. From all the ways we can order the 3 beats we
only want to consider one.

31. In how many ways can you order 3 beats? Imagine you had 3 flower pots and wanted to know in
how many different ways you could arrange them in a line...

32. Explain how the term 6·7·8
3·2·1 relates to our problem.

33. Classroom Discussion: What is a proof in mathematics? What is a conjecture? Can we use
examples to be sure that a conjecture is true?

34. Prove that we can use the factorial equation to compute the number of possible rhythms.

There are so many methods to solve our problem. Maybe you did it in one of the above ways?
Lets try another method:

If you choose the first beat on the first count, here is the list of all the possibilities to choose the
other two beats:
1 2 3 1 3 4 1 4 5 1 5 6 1 6 7 1 7 8
1 2 4 1 3 5 1 4 6 1 5 7 1 6 8
1 2 5 1 3 6 1 4 7 1 5 8
1 2 6 1 3 7 1 4 8
1 2 7 1 3 8
1 2 8

There are 6 + 5 + 4 + 3 + 2 + 1 = 21 possibilities.

35. Create a list as above for starting the first beat on the second count. How many possibilities are
there?

36. Continue creating lists and counting the possibilities.
37. For every block of numbers you found a sum, can you find all those numbers in Pascals triangle?

Circle them in your triangle. Now find our result 56 in the triangle and circle it, too. Describe
what you see.

38. The pattern you see is also called the hockey stick pattern. Can you see why? Does the same
pattern work for other numbers in the triangle (i.e. when you move the hockey stick)?

3. Further Investigation

F1. There are many more exciting patterns in Pascals triangle! Find at least three.

One of the patterns you probably found is the addition pattern: when adding two adjacent
numbers the result will be right beneath the two numbers that you added. Mathematicians love
finding patterns but they also wonder about why the patterns occur and how you can be sure that
they will continue to happen. Our goal now is to understand why the addition pattern in Pascal’s
triangle occurs and to make sure that it will still happen for many counts.

10
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F2. In Figure 2.3, fill all possible rhythms in the respective boxes.

5 counts

1 beat 2 beats

2 beats

4 counts

Figure 2.3. Part of Pascal’s Triangle.

F3. Now look at the rhythms you filled into Figure 2.3, can you see any structure that suggests how
the rhythms in the upper boxes are connected to the rhythms in the box below? Explain the
structure you found.

F4. Go to another place in Pascal’s triangle and choose three similarly positioned boxes. Fill them
with rhythms and see if your structure applies here as well.

F5. Does your structure apply to the top of the triangle?
F6. Explain in your own words why the addition pattern in Pascal’s triangle occurs, using the

structure you found. Be specific in your arguments.
F7. Can you prove that the hockey stick pattern in Pascal’s triangle will always be true?
F8. Read the paper “The Rascal Triangle” written by middle school students Alif Anggoro, Eddy

Liu and Angus Tulloch. Does this influence or change your thinking about mathematics
research?

11
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4. Interlude: Clapping Music

You explored one mathematical aspect of rhythms in the last section, which was mostly based on
counting. Mathematicians call this kind of mathematics Combinatorics. Now we want to see some
musical application of rhythm structures by playing a piece composed by Steve Reich (American
Composer; 1938 - ).

Practice the following rhythm: 111011010110. One person keeps clapping this rhythm. We want
to cycle through the rhythm by moving one count from the beginning to the end. For instance for
the first time, we move the first beat to the end and start with the second beat 110110101101. A
second person claps the cycled rhythm starting at the same count as the first player starts his or her
rhythm. After listening to this combination the second person moves yet one more count over and
is now clapping 101101011011. Keep going until both players clap the same rhythm again. You can
listen to the piece at https://www.youtube.com/watch?v=lzkOFJMI5i8.

39. How do you like the resulting piece of music? What is appealing to you? What do you dislike?

Steve Reich was born in New York, on October 3, 1936, and is currently living in Manhattan.
After studying philosophy he turned to music and explored many different techniques of composition.
His style is labeled “minimalist music”. He does for instance play the same piece on two different
instruments but using different tempo (this is called phasing). He also used tape loops, recording
rhythms on tape and then playing them back over and over again in either the same or different
tempo. Recently the New York Times called him ”our greatest living composer”. In April 2009 Steve
Reich was awarded the Pulitzer prize in Music for his composition ’Double Sextet’.

Figure 2.4. Evelyn Glennie (Scottish Percussionist; 1965 - ) opens her recital at
the Ormond Beach Performing Arts Center playing Clapping Music by Steven Reich
on the wooden blocks. Glennie is the worlds first full-time solo percussionist. She is
profoundly deaf.

Scottish percussionist Evelyn Glennie opens her recital at the Ormond Beach Performing Arts
Center playing Clapping Music by Steven Reich on the wooden blocks. Glennie is the worlds first
full-time solo percussionist. She is profoundly deaf.

40. How many times does the rhythm 111011010110 need to be shifted in order to sound like the first
rhythm again? Find a way to explain your answer that doesn’t require listening to the piece.

41. Draw a picture or diagram to support your reasoning in investigation 40.

12
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42. Find a rhythm on 8 counts that will sound the same after being shifted exactly 4 times. It should
not sound the same after any other shift less than 4. Explain your strategy.

43. Can you find several rhythms for investigation 42? Explain why or why not.
44. Find a rhythm on 8 counts that will sound the same after being shifted exactly 5 times. It should

not sound the same after any other shift less than 5. Explain your strategy.
45. Can you find several rhythms for investigation 44? Explain why or why not.
46. Can you find a general answer for investigations 42 and 44? The question is: Are there any

rhythms on n counts that sound the same after being shifted exactly m times? It should not
sound the same after any other shift less than m times.

47. It turns out that we can ask the question in a slightly different way, maybe you did already come
across this problem. The question is now: Are there any rhythms on n counts that sound
the same after being shifted m times? It can also sound the same at other shifts less than m
times.

48. Compose your own piece of music/rhythm using the above ideas. You can use the software ABC
drums at http://www.sju.edu/~rhall/Multi/drums.html to help you play and record your
composition.

5. What is mathematics?

Now that you have done some investigations, let’s think about what mathematics is. How do these
investigations compare to the mathematics you have seen in high school? Is it harder oder easier? Do
you like it better or not?

49. Read Lockhart’s Lament http://www.maa.org/devlin/LockhartsLament.pdf and write a re-
sponse to it addressing the above questions.

50. Do you think mathematics is an art? Why or why not?

51. Classroom Discussion: Share your thoughts about Lockhart’s lament with your classmates.
Did the reading change your perception of this mathematics class?

6. Further Investigations

There is much more that can be done with clapping music, this was just a little taste of it. The
following investigation gives you motivations and ideas to go further into the topic and do your own
projects.

F9. Given 12 counts how many rhythms are there that lead to interesting pieces of clapping music,
similar to Reich’s piece? You can read the paper “Clapping Music - a Combinatorial Problem”
by Joel Haack, published in the College Mathematics Journal (available online). This is a
bigger mathematical challenge, you will have to learn about groups, permutations, and some
combinatorics to understand the paper!

Evelyn Glannie has a wonderful Ted talk you should listen too: http://www.ted.com/talks/

evelyn_glennie_shows_how_to_listen.html. The following investigations can help you focus on
different aspects of the talk, but there is much more to take away from it.

F10. How is Evelyn’s idea of truly listening to someone (and not being judgmental) relevant in your
class? In your life?

F11. Is there a “right” and “wrong” in music? in mathematics?
F12. Do you need to be creative in music? in mathematics?
F13. Evelyn says that you need to experiment with a drum before you can start to make music with

it. How is this related to doing mathematics?
F14. In music you can practice playing an instrument or you can interpret music in your own way.

Can you find equivalent aspect in doing mathematics?
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F15. Evelyn says that she wonders “why she is practicing music”. She “need to have a reason”. Do
you feel like this when you are doing mathematics?

14



CHAPTER 3

Understanding Rhythm-Palindromes

Music is the pleasure the human mind experiences from counting without being aware that
it is counting.

Gottfried Leibniz (German Mathematician and Philosopher; 1646 - 1716)

1. Palindromes

In Chapter 2 we looked at the combinatorics of rhythms in general. In this chapter we want to
look more closely at some especially beautiful rhythms: palindromes. But before we start we need
to talk about how to notate rhythms. There are many different ways how we can do this; for this
chapter we want to focus on two of them.

1. Binary notation, for instance 10110110, with 1s as beats and 0s as off-beats.
2. Geometric notation, where we notate the counts around a circle and mark the beats as dots.

If you connect the dots you can use the geometric shape, called a polygon , to visualize the
rhythm. See Figure 3.1.

Figure 3.1. 10110110 in geometric notation. There are 8 Counts and 5 Beats.

We want to find and count rhythms that are palindromes. You may be familiar with the notion of
a palindrome from words like ANNA which read the same forwards and backwards. The French com-
poser Olivier Messiaen (1908-1992) uses rhythmic palindromes in his pieces, for instance in “Danse de
la Fureur, pour les sept trompettes”, see Figure 3.2. Every measure consists of a palindromic rhythm1.

1According to [11], in 1940, Messiaen was imprisoned in a camp in Germany. Whilst in captivity, he wrote the
Quartet for the End of Time. It was performed in 1941 by Messiaen and three fellow prisoners to a crowd of 5000. The

instruments that Messiaen had at his disposal were a (not in tune) piano, cello, violin and clarinet.

Messiaen calls palindromic rhythms non-retrogradable.
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You can listen to the music at http://www.jaimeoliver.pe/courses-2/music_hum/post-war.

Figure 3.2. Example of Palindromes in Messiaen’s Music

Godfried Toussaint [13] describes a palindrome as a rhythm that sounds the same if you play it
forward or backward in the circle notation. Figure 3.1 shows a palindrome in that sense: If you play
to the right, starting at the top, you get 10110110, if you play to the left you get 10110110.

1. Find palindromes in binary notation, like 101101101 and compare them with Toussaint’s palin-
dromes. Would Toussaint consider your binary palindromes as palindromes?

Let’s call Toussaint’s palindromes geometric palindromes and the ones in binary notation
musical palindromes. We want to understand how different these two really are!

2. Independent Investigation: To compare the two palindrome definitions we want
to record the number of geometric palindromes and the number of musical palindromes
in two triangles, similar to Pascal’s triangle. You can use Figure 3.3 and Figure 3.4. This
will take some time, so work with another student on this problem and compare you
results with other groups.
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Figure 3.3. Musical Palindrome Triangle

Figure 3.4. Geometric Palindrome Triangle

3. Do you notice any pattern in the triangles? Do you see any symmetry? Describe your observa-
tions.

4. Can you predict the entries of the next row of each triangle? Describe your strategies.

2. Patterns in the Palindrome Triangles

Did you notice that the addition pattern from Pascal’s triangle works sometimes in the two new
triangles? Try adding up two numbers and compare the result with the entry below. This seems
surprising! Why does it sometimes work and sometimes not? To find out, we will start with the
musical triangle.

5. Find a place in the musical triangle where the addition works and write out the corresponding
musical palindromes. Can you see how to create a palindrome in the lower row using the
ones above? You can also fill in Figure 3.5.

17
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Two Beats

6 counts

5 counts

One Beat Two Beats

Insert 1 Insert 0

Figure 3.5. Addition in Part of the Musical Palindrome Triangle

6. Now try a place where the addition does not work. Write out the corresponding musical palin-
dromes. Can you see what happens? You can also fill in Figure 3.6.

Three Beats

6 counts

5 counts

Insert 0Insert 1

Two Beats Three Beats

Figure 3.6. Addition in Part of the Musical Palindrome Triangle Fails

By now you have a good sense of how to count musical palindromes and why the addition patterns
emerges from the triangle.
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7. Independent Investigation: Look at examples for geometric palindromes to un-
derstand why the addition pattern sometimes works and sometimes fails. Explain your
reasoning.

3. The Mystery of Palindromes

But the mystery of comparing the two kinds of palindromes is still unsolved...

8. Compare the two triangles and see if you can find a musical palindrome for a corresponding
geometric palindrome. Which cases should be easy? Where do you get stuck?

Did you notice that all the entries in the triangles are the same except for the places where the
musical triangle has zeros?

9. Why doesn’t the geometric triangle have any zeros?
10. Why does the musical triangles have zeros?

Now the challenge seems to be that even if the numbers in the triangels agree, it is not clear how
to take a musical palindrome and make a geometric one and vice versa! For instance, for 4 counts
and 2 beats there are 2 musical palindromes and 2 geometric palindromes.

11. Can you see how to take 0110 and make it into a geometric palindrome? Be creative! You can
use Figure 3.7 for your result. Write down your strategy.

010100110

Figure 3.7. Musical to Geometric Palindrome

12. Now make sure that your strategy works for all cases. Can you use your idea also to get a musical
palindrome from a geometric palindrome? You can use Figure 3.8 to test your idea.

19



DRAFT c© 2013 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

??????

Figure 3.8. Geometric to Musical Palindrome
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4. Further Investigations

4.1. Which palindromes are better? We have thoroughly investigated two different kinds of
rhythmical palindromes, but which one is better? And better in which sense?

13. Independent Investigation: Invent a piece of music, just using rhythms, that
uses some palindromes and some rhythms that are not palindromes. You can use the
software ABCdrums from Rachel Hall’s Website http://www.sju.edu/~rhall/Multi/

drums.html to help you play your piece. Now play your composition to several listeners
and see if they can hear the palindromes. The purpose of this activity is to find out if
we can hear palindromes at all, and if we can, which kind of palindromes are easier to
hear.

4.2. Triangle Fractals. Look at Sierpinski’s triangle in Figure 3.9. If you “zoom in” you can
see that the triangle structure repeats itself over and over again. We call such self-similar objects
fractals.

Figure 3.9. Sierpinski’s Triangle.

21

http://www.sju.edu/~rhall/Multi/drums.html
http://www.sju.edu/~rhall/Multi/drums.html


DRAFT c© 2013 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

14. Independent Investigation: Look at our musical and geometric palindrome tri-
angles and see if you can find fractal-like structures. You might want to use color to
emphasize special numbers or shapes.

5. Connections

Palindromes also play an important rule in other forms of art, for instance in poetry.

15. Find all palindromes in the poem “Dammit I’m mad” by Demetri Martin (American Comedian
and Artist; 1973 - ).

Dammit Im mad.

Evil is a deed as I live.

God, am I reviled? I rise, my bed on a sun, I melt.

To be not one man emanating is sad. I piss.

Alas, it is so late. Who stops to help?

Man, it is hot. Im in it. I tell.

I am not a devil. I level Mad Dog.

Ah, say burning is, as a deified gulp,

In my halo of a mired rum tin.

I erase many men. Oh, to be man, a sin.

Is evil in a clam? In a trap?

No. It is open. On it I was stuck.

Rats peed on hope. Elsewhere dips a web.

Be still if I fill its ebb.

Ew, a spider eh?

We sleep. Oh no!

Deep, stark cuts saw it in one position.

Part animal, can I live? Sin is a name.

Both, one my names are in it.

Murder? Im a fool.

A hymn I plug, deified as a sign in ruby ash,

A Goddam level I lived at.

On mail let it in. Im it.

Oh, sit in ample hot spots. Oh wet!

A loss it is alas (sip). Id assign it a name.

Name not one bottle minus an ode by me:

Sir, I deliver. Im a dog

Evil is a deed as I live.

Dammit Im mad.

”Weird Al” Yankovic’s song Bob is a parody of ”Subterranean Homesick Blues” by Bob Dylan
and contains many palindrome phrases, see http://www.youtube.com/watch?v=Nej4xJe4Tdg.
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In San Diego, you can walk across a bridge and play the 488 chimes while you walk. The song you
hear was composed by Joseph Waters and plays the same in both directions to accomodate walking
in either direction.

Figure 3.10. Bridge in San Diego with Palindromic Chimes.
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CHAPTER 4

Tuning and Intervals

1. How perfect is Pythagorean Tuning?

Sitting on the riverbank, Pan noticed the bed of reeds was swaying in the wind, making a
mournful moaning sound, for the wind had broken the tops of some of the reeds. Pulling the
reeds up, Pan cut them into pieces and bound them together to create a musical instrument,
which he named “Syrinx”, in memory of his lost love

Ovid (Roman Poet; 43 BC - AD 18/19)

Have you ever watched someone tune a guitar? Or maybe even a piano? The lengths of the strings
have to be adjusted by hand to exactly the right sound, by making the strings tighter or looser. Bue
how does the tuner know which sound is the right one? This question has been asked throughout
history and different cultures at different times have found different answers. Many cultures tune
their instruments differently than we do. Listen for instance to the Indian instrument sarod in http:

//www.youtube.com/watch?v=hobK_8bIDvk. Also, 2000 years ago, the Greek were using different
tuning ideas than we do today. Of course the Greek did not have guitars or pianos at that time, but
they were still thinking about tuning for the instruments they had and about the structure of music in
general. The pan flute, one of the oldest musical instruments in the world, was used by the ancient
Greeks and is still being played today. It consists of several pipes of bamboo of increasing lengths.
The name is a reference to the Greek god Pan who is shown playing the flute in Figure 4.1.

Figure 4.1. Pan playing the pan flute.
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For the following investigations you need to make your own “pan flute” out of straws. Straws for
bubble tea1, work better than regular straws since they have a wider diameter. You need to plug the
bottom with a finger to get a clear pitch. Put your lower lip against the opening of the straw and
blow across the opening (but not into it). It helps to have some tension in the lips, as if you were
making the sounds “p”. Also, for shorter straws you need more air pressure than for longer straws.2

1. Take a straw and cover the bottom hole while blowing over the top hole. Practice until you can
hear a clear note. Why do you think we hear a sound?

2. Do you think the sound will be different if the straw is longer or shorter? Explain your thinking.
3. Take a rubber band, hold it tight between two hands and have someone pluck it. Can you hear

a clear note?
4. Take a rubber band, stretch it over a container and pluck it. Can you hear a clear note? Why

do we hear a sound?
5. Do you think the sound will be different if the rubber band is longer or shorter? Tighter or looser?

Explain your thinking.

6. Classroom Discussion: How is sound generated? What exactly is vibrating? What is a sound
wave? How do different musical instruments like drum, guitar, violin and trumpet generate
sound?

For the next investigations we will use the modern piano as a reference tool, so that we can
compare our sounds and give them labels. Even with the piano it is quite difficult to hear if two
sounds are the same or not. If you have difficulties, turn to someone who has practiced music for a
long time for support.

7. Take one straw and cut it such that it has the sound of any white key on a piano (except for the
B key, see Figure 4.2.

Figure 4.2. piano keys with labels.

We will discover later why the B key doesn’t work.) You can go to
http://www.play-piano.org/play_online_piano_piano.html to use the online piano.

8. Take a second straw and cut it so that it has a length of 1
2 of the first straw.

9. Take a third straw and cut it so that it has a length of 2
3 of the first straw. Be precise!

10. Take a fourth straw and cut it so that it has a length of 3
4 of the first straw. Be precise!

11. Compare the sounds of 2 straws at a time. We call two notes sounding at the same time an
Interval. We write e.g. (1, 2

3 ) for the interval of the first straw and the straw with length 2
3 .

Listen carefully: which two straws sound the most alike? You can also sing the notes of the
2 straws and listen to the interval to make your decision.

12. Classroom Discussion: Share your intervals with the class. Decide together which fraction
gives the “most alike” interval.

1“Bubble tea” is the American name for pearl milk tea from Taiwan. You need straws with a larger diameter to

drink bubble tea, since the tea contains small balls made of starch.
2Tubes with diameter 1

10
of their length are easiest to play!
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We call the interval that sounds the most alike an Octave . Human brains seem to be hard-wired
to perceive these sounds as alike or even the same. The thalamus is a part in the brain of mammals
that is built in layers of neurons that correspond to octaves. See Figure 4.3. Additionally research
shows that rhesus monkeys have “same” responses to melodies that are one or two octaves apart but
“different” responses to other melody shifts.

Figure 4.3. Thalamus in the Human Brain.

This explains why we can find octaves in cultures all over the world even though their music may
sound very different. Even though all cultures share octaves, there are many ways to divide the octave
into smaller intervals. We call those choices scales. In modern western culture, the major and minor
scale are the most prominent scales. For example the C major scale corresponds to the white keys on
a piano. Notice that on a piano you have to go up or down 8 white keys to travel an octave (starting
on a white key and counting this first key as one of the 8).

You can go to http://www.play-piano.org/play_online_piano_piano.html to play the C-
major scale. Take the intervals (1, 2

3 ) and (1, 3
4 ) and see if you can find the corresponding intervals on

a piano.

13. Take your pair of straws for the interval (1, 1
2 ). How many white keys are between the notes if

you count the beginning and the end note as well?
14. Take your pair of straws for the interval (1, 2

3 ). How many white keys are between the two
straw-sounds if you count the beginning and the end key as well?

15. Why do we call the interval (1, 2
3 ) a fifth3? Explain!

16. Why do we call the interval (1, 3
4 ) a fourth? Explain!

You have probably heard of the mathematician and philosopher Pythagoras of Samos (Greek
Philosopher and Mathematician; 570 BC - 495 BC), but did you know about the secret society called
the Pythagoreans? The Pythagoreans believed that everything in the world could be explained
using mathematics, including music. There is not much evidence about the life of Pythagoras and his
disciples, see Further Investigation 3. However, they are credited with some important discoveries in
mathematics. The Pythagoreans believed that all music could be explained using mathematics. They
used, for instance, the musical fifths to get to all other notes in their scales as the next Investigations
illustrate. The tuning they used is called Pythagorean Tuning .

3We have to distinguish between the musical fifth (which is a specific interval between two notes), and a mathe-

matical fifth (which is the fraction 1
5

.)
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Figure 4.4. Medieval Woodcut showing Pythagoras.

17. Take the interval (1, 2
3 ). Now take a third straw and cut it such that the length is 2

3 of the

previous 2
3 straw. How much of your longest straw is your new, very short straw? Write your

answer as a fraction and explain your reasoning.
18. What is the label of your new straw on the piano? Is it in the same octave as the first two

straws? Can you see how to use the fraction to determine whether your new note is in the
first octave or not? From now on we will call this octave (between our first two straws) our
main octave .

19. Compare the two fractions 1
1 and 1

2 , whose sounds lie an octave apart. Which fraction operation
do we have to do to get from one to the other? Explain how to go up and down octaves using
fractions.

20. By looking at any fraction, how can you tell whether the corresponding note will be in the main
octave or not? Explain your reasoning.

21. Take the fraction from Investigation 17. How can we use it to get a new fraction corresponding
to the same note in the main octave?

22. You just found a fraction representation of a note in your main octave that corresponds to a fifth
above a fifth. Continue the pattern by taking the next fifth and so forth. If you can’t hear
the sound of your straw anymore, see if you can find the mathematical pattern to continue
this quest in theory. You should find a list of 5 fractions.

23. Draw a number line from 1
2 to 1 and label the first 5 fractions you found.

24. Look at a piano keyboard. How many steps are there in a fifth if you include the black keys?
25. We said earlier that a fifth corresponds to five white keys on the piano keyboard if you don’t start

from a B. Use Investigation 24 to argue why did we had to exclude the B.
26. Using investigation 24, how many fifths do we have to go up on a piano keyboard before we return

to the same note (some octaves higher)?
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27. Now we will use the fraction 2
3 to go up by fifths. Find the fraction representation of the note

in the main octave that corresponds to 12 fifths above your original note. Explain your
strategies.

28. How far is the fraction from investigation 27 from 1? Did you expect this answer? Explain.
29. Does the chain of fifths ever end? Use fractions to explain your answer.
30. Use the chain of fifths to explain problems that arise with Pythagorean tuning.

31. Classroom Discussion: Does the chain of fifths end or not? Compare your result of the fraction
computation with the result on the piano keyboard. How perfect is Pythagorean tuning?

2. Frequency, Fractions and Ratios

It is common to measure the “height” of a note, also called pitch , with frequencies. The frequency
measures how fast the sound wave vibrates. In a long straw (big number) the air vibrates more slowly
(small number) and in a short straw (small number) the air vibrates faster (big number), which means
the length of the straws is anti-proportional to the speed of vibration. For simplicity we will assume
that the fractions for frequency are just the reciprocals of the fractions for length, i.e.

frequency =
1

length
.

For example a straw of length 1
2 sounds with a frequency of 2

1 .
The unit of frequency is hertz (Hz), named after Heinrich Hertz (German Physicist; 1857 -

1894). 1 Hz means that an event repeats once per second.

Figure 4.5. Heinrich Hertz.

We want to redo the above investigations thinking about frequency instead of length.

32. Write the intervals (1, 1
2 ), (1, 2

3 ), and (1, 3
4 ) using frequencies instead of length.

33. By comparing the two frequencies that make our main octave, which fraction operation do we
use to go up and down octaves? Explain.
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34. Compute the ascending fifths as above using frequencies instead of length. Explain your strategies.
35. Draw a number line from 1 to 2. Label your first 5 frequency fractions.
36. Since the process of taking more and more fifths results in notes that sound out of tune, the

Pythagoreans used the fraction 3
4 to help them. Recall the key on the piano corresponding

to the fourth, i.e. to the fraction 3
4 . How many fifths do we use to go up on the keyboard in

order to get to the same note as the fourth (ignoring octaves)?
37. Why is it more accurate to work with the fourth instead of the fifths in investigation 36?
38. Label the frequency that corresponds to the fraction 3

4 on your number line.

Your main straw could have been any length in the above investigations and hence correspond
to any note from a white key (excluding B, of course). For the next section we will assume that it
corresponds to the note C. The mathematics works out the same if you use another note as your
starting point, but it makes it easier to read if we agree on a base note.

We want to discover how the Pythagorean fifths will give us the entire C-major scale!

39. Fill in the first row in table 4.1. If your main straw would correspond to the note C, how do the
other frequency fractions we found relate to the keys on the piano? You can use the fractions
you computed in the above investigations. Just match them with the C-major scale instead
of the scale from your straws.

Table 4.1. Frequency Table

Note C D E F G A B C

Frequency Fraction 1
1

2
1

Ratios between Frequency Fractions

40. Classroom Discussion: Compare the first row in table 4.1. Now look at the ratios4 between
adjacent fractions on your number line. Fill in row 2 in table 4.1. What patterns do you
notice?

You just discovered the so called Pythagorean Tuning based on C. Unfortunately there are
some problems with this tuning method... you will discover some of these in the next Investigations:

41. We tried to avoid the “incorrect” last fifth, also called the wolf interval , by chosing the frequency
4
3 instead of the last power of 3

2 . Will this solve the problem or will there still be a wolf
interval? Explain.

42. Your piano is tuned in Pythagorean tuning based on C. Imagine you have a melody starting
with the fifth CG. Do you think the song would sound “bad” if you started playing it on a
different note? Explain.

So it seems that for some melodies the piano will sound in tune while for other melodies or other
starting points of you melody it might sound out of tune. Musician would say: “If I played a song
that uses a different key it would sound out of tune!”. This key is not the same as a key on a keyboard.
It is an abstract term roughly describing a set of notes that a piece of music is most likely to use. You
can for instance say that a song is being played in the key of “C major”.

That is not what we wanted! It gets even weirder:

43. Compare the ratios for a half step and a whole step in Pythagorean tuning (table 4.1). What do
you notice? Are two half steps really a whole step? Remember to use ratios and differences
in your argument.

4To find the ratio between two fractions you need to divide one fraction by the other - you compute a fraction of

fractions. We will divide the larger fraction by the smaller to make it easier to compare.
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44. Why is Pythagorean tuning a very natural way of tuning, even though problems arise?

3. The Roots of Equal Temperament

Since the Pythagorean tuning is not the same for all keys, other ways of tuning were developed
over time. In the 18th century well tempering was used, in which compromises were made such
that every key would sound good but slightly different. One advantage of each key sounding different
is that the mood of a piece of music can be expressed by the choice of key.

Since the middle of the 19th century equal temperament is most commonly used. This tuning
requires a new mathematical idea which you will discover in the next Investigations. We know that
the frequency interval (1, 2) gives us an octave. It is customary in Western Music to have 12 steps
in an octave. Therefore we need to find a way to split the interval between 1 and 2 into 12 “equal”
steps. Since we are dealing with ratios here, we need all the steps to have the same ratio. Look back
at table 4.1 to see 7 steps (ratios of frequency fractions) that are not all equal.

45. Split the interval between 1 and 2 into 2 “equal” steps such that the ratios are the same. This
means we are looking for a fraction, say x, between 1 and 2, such that the ratio of 2 and x is
the same as the ratio of x and 1. What is x? Describe your strategy.

46. Compare your solution with the following problem: Split the interval between 1 and 2 such that
differences are the same. This means we have to find a number, say y, between 1 and 2 such
that the difference between y and 2 is the same as the difference between y and 1. What is
y? Did you get the same answer as in the last investigation?

47. Classroom Discussion: Compare the two solutions above to get “equal size” steps in the interval
[1, 2]. Compare your strategies. What does “equal size” mean? Compare your results. Now
go back to Investigation 23 and Investigation 35 and explain why we did not see any useful
spacing pattern on the number lines.

48. Split the interval between 1 and 2 into 3 steps with equal ratios. Describe your strategy.
49. Split the interval between 1 and 2 into 4 steps with equal ratios. Describe your strategy.
50. Split the interval between 1 and 2 into 5 steps with equal ratios. Describe your strategy.
51. Split the interval between 1 and 2 into 12 steps with equal ratios. Describe your strategy.
52. Summarize how to find the frequencies for the equal temperament tuning.
53. What are some advantages and some disadvantages of equal temperament tuning?

You really understand Pythagorean tuning and equal temperament tuning now, and you have
traveled through many centuries of music and mathematics history. Hidden in the above mathematics
is some history about numbers:

The Pythagoreans believed that every number could be written as a fraction. Mathematicians
call these numbers Rational Numbers. According to legend Hippasus of Metapontum (Greek
Philosopher; 500 BC - ) was put to death by Pythagoras because he had revealed the secret of the
existence of irrational numbers: numbers that can not be written as fractions.

It might seem easy to grasp for us now, but every time mathematicians expand their ideas of
numbers it is like a small revolution. And there are more than just irrational numbers! There are for
instance complex numbers and imaginary numbers and surreal numbers. For the latter you can read
the book Discovering the Art of Mathematics: The Infinite.

54. Do you find it surprising that the Hippasus was put to death?
55. Name one irrational number. Do you know more?

4. Further Investigations

The way Greek mathematicians first encountered irrational numbers was not in music, but in
geometry. You will solve their problem in the next Investigation.
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Figure 4.6. Hippasus of Metapontum.

F1. In a square with side length equal to 1, what is the length of the diagonal?
F2. Find a proof of the fact that

√
2 is an irrational number. You can look at books or go online.

Explain the proof to someone else without looking at your notes to see if you fully understand
it.

F3. Read “The Ashtray: Hippasus of Metapontum (Part 3)” by ERROL MORRIS published in
the New York Times Opinionator. What do we actually know about Hippasus?

F4. Understand how to draw graphs of waves with different frequencies, see Figure 4.7. How does
this relate to waves of air in the straws?

Figure 4.7. Graphs of waves with different frequencies.

Check out Ruben’s Tube videos on youtube.com. How does this connect to graphs of
sound waves? See Figure 4.8.

F5. In Timothy Johnson’s book [9], you can investigate (diatonic) transposing patterns for different
scales. Proving why these patterns occur is challenging and really fun.
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Figure 4.8. A Ruben’s Tube Experiment.
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CHAPTER 5

Fractal Music

The most complex object in mathematics, the Mandelbrot Set ... is so complex as to be
uncontrollable by mankind and describable as “chaos”.

Benoit Mandelbrot (French American Mathematician; 1924 - 2010)

1. Fractals

Among the most beautiful images mathematics can create are images of fractals, see Figure 5.1.
Go to http://www.youtube.com/watch?v=G_GBwuYuOOs and watch the Mandelbrot set zoom in closer
and closer.

1. Looking at the Mandelbrot fractal, do you think mathematics can be beautiful?

Figure 5.1. Mandelbrot Fractal

First, we want to see what the secret of fractals is. Construct the following three examples of
fractals. Comparing them, what do you think is special about fractals?

2. Skyline:
Construct a line segment. Divide it into proportions x:y:z (going from left to right) where

x+y+z=1. You can make a simple choice like x = y = z = 1
3 or a more interesting one like

x = 0.3, y = 0.5, z = 0.2. Construct a square on the middle portion. Now divide each of the
three horizontal line segments into the same three proportions and construct squares on the
middle portions. Continue until you see a nice “skyline”.

3. Koch’s Snowflake:
Construct an equilateral triangle (all sides have the same length). For one of the edges

(mathematicians call the sides of a triangle edges) of the triangle, divide the edge into three
equal parts. Construct an equilateral triangle on the middle third of the line and then erase
the base of that triangle. Repeat this process on each of the four line segments. Repeat this
process for all edges of the original triangle. You will see a nice “snowflake”.
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4. Sierpinski’s Triangle:
Draw an equilateral triangle. Connect the midpoints of the edges. Ignore the new middle

triangle that you get and repeat the process for the other three triangles. Repeat this process
until you see a beautiful pattern of triangles emerge.

5. Explain what a fractal is given the examples you have seen so far.

You have seen that a fractal is an object that displays self-similarity . This can be true for an
object from nature, like cauliflower or fern, or for a more abstract mathematical objects like Koch’s
Snowflake see Figure 5.2.

Figure 5.2. Abstract Fractals like Koch’s Snowflake and Sierpinski’s Triangle

We want to create a fractal that has different replacement rules. Let’s make a different skyline
where you start with x : y : z such that x + y + z = 1 but now we draw an arc on top of the middle
piece and a skyline piece on the first and last section. This is our starting point, see Figure 5.3. Now,
whenever you see a straight line you replace it with the skyline as before (erecting a square on the
middle section), but whenever you see a arc, you place another semicircle on top of it with some
distance you can decide on. Do you like this skyline?

6. Come up with your own skyline! Draw a picture and explain your replacement rules.

2. Musical Fractals via L-Systems

Now we have played with different fractal structures but the big question is: Can we somehow
take this idea of self-similarity and translate it into music?

7. Independent Investigation: Compose your own piece of fractal music! Be cre-
ative. Explain in detail how you used the idea of a fractal.
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Figure 5.3. New Skyline starting point.

Building on the idea of C. Hazard and C. Kimport, see [8], we want to to create music using
fractals via L-Systems: An L-System is a method of generating long strings of symbols from a short
initial string (or axiom) and a set of production rules, one for each symbol. From here, we generate
longer strings by replacing each symbol with its respective rule, and repeat this process until we have
a string of a desired length. Here is an example:
Axiom:

AB

Production Rules:

A → ABC

B → CAD

C → DC

D → BDB

Start out with the axiom, “A B”. The production rules tell us to replace A with ABC and B with
CAD. Therefore the string would become “A B C C A D”.

8. If we use the same production rules with this new string, what do we get? What do you get if
you do it one more time?

9. Independent Investigation: We want to translate these strings into music. Can
we read the letters as names of notes? Or names of chords? How about names for lengths
of notes? Choose your favorite method and create your own piece of music. You can use
the software finale notepad http://www.finalemusic.com/notepad/ if you are familiar
with the standard music notation to help you create and play your piece. If you are not
familiar with reading and writing music you can compose a rhythm instead using ABC-
drums from Rachel Hall’s Website http://www.sju.edu/~rhall/Multi/drums.html.

10. Classroom Discussion: Play your piece of music to your group or the class and share your
fractal composing method with them. What is similar and what is different about the com-
positions in your group?

3. Musical Fractals using Turtle Graphics

You have used a mathematical idea to create music but we are missing the connection with the
images that were so appealing about fractals. So let’s create a musical fractal next that is based on
an image of a mathematical fractal.
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In the Turtle Graphics interpretation, there are four basic symbols:

F = Move forward one unit and draw a line while you are moving

f = Move forward one unit but don’t draw a line

+ = Turn d degrees to your left

− = Turn d degrees to your right

As before we can choose an axiom and assign production rules using these 4 symbols, but now you
have to also pick d, the number of degrees. Pick a point on your page where you will start drawing
and a direction you are facing (so that you know which direction you will draw in next!).

11. Independent Investigation: Can you figure out which choice of axiom and pro-
duction rules will give you Koch’s snowflake? Here are some hints: Think first about
which symbols give you an equilateral triangle. Do you know how big the angles are in
a triangle with sides of equal length?

Pick d as this angle and remember that d has to stay the same throughout your
axiom and production rules.

Now we want to find the production rules. It may be easier to first find the rule
that creates one edge, as shown in Figure 5.4. Try out if your turtle graphics creates the
correct fractal!

Can you now find the axiom and rule for Koch’s Snowflake1 ?

Figure 5.4. The first step to Koch’s Snowflake...

Turtle graphics is an interesting name for the procedure described above. Do you have any idea
why it is called turtle graphics? Look at Figure 5.5.

Where is the music connection? Instead of interpreting the symbols as notes or chords, they are
interpreted as instructions to “draw” a melody on the staff. In our musical interpretation, horizontal
motion is seen as note length, while vertical motion is seen as change in pitch. We can choose a
starting note and a length that corresponds to the geometric unit. Also we can decide how we want
to move “up” on the staff, by half notes or whole notes or by staying within a scale. So there is still
lots of room to play!2

12. Using the above method, create a melody that corresponds to Koch’s snowflake. Play your
melodies to your group and compare. If you are unfamiliar with playing music, use the
computer to help you perform your piece.

2If you only choose notes from one scale, for instance the pentatonic scale, your piece is more likely to sound

traditionally pleasing than if you choose half-note steps.
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Figure 5.5. LOGO and Turtle Graphics

4. Finding Fractals in Music

We found different ways to use the idea of fractals to create music. How about music that already
exists? Can we find fractals in music? Of course not all musical pieces show fractal-like structures,
but there are some famous ones that do.

13. Consider the following rhythm in Figure 5.6. Can you find a repeated use of the pattern AAB
where each B section lasts twice as long as each A section? How many are there? Describe
how this reminds you of a fractal.

Figure 5.6. Finding Fractal Structure in Sheet Music

Now we are ready for a famous example: Bach’s Cello Suite 3, see Figure 5.7.

14. Harlan J. Brothers, [2], detected repeated use of the pattern AAB on different scales, where each
B section lasts twice as long as each A section. See Figure 5.7. Can you find those sections?
How does the structure of the piece resemble a fractal? Explain.
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Figure 5.7. From Bach’s Cello Suite

5. Connections

Investigate Discovering the Art of Mathematics: Geometry to play with dimensions of fractals.

Investigate Discovering the Art of Mathematics: Calculus to see if the area inside a fractal can be
finite or not.
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CHAPTER 6

The Space of 2-Chords

1. Maximally Even Chords

Music is architecture translated or transposed from space into time; for in music, besides
the deepest feeling, there reigns also a rigorous mathematical intelligence.

Georg Hegel (German Philosopher; 1770 - 1831)

Do you know what a chord is? A chord is a number of notes sounding at the same time, there
could be a 2-chord with 2 notes sounding but also a 5-chord with 5 notes sounding simultaneously.
3-chords are the most popular ones, you might have seen them written for guitar or piano players
above the lyrics of a song, for instance C major or A minor.

The kinds of chords and scales that people found pleasing to listen to changed over the centuries.
For instance minor and major triads (2 notes that are 3 or 4 half-steps apart, e.g. CEb or CE)
which are now part of basically every piece in Western Music where uncommon before the 15th
century. Chords consisting of 4 notes became popular in the 17th century. It is interesting to notice
how much music, art and mathematics change over time.

Now let’s say you want to know how many (different) chords there are. How would you do that?
Is there a connection to our questions in Chapter 2 about counting possible rhythms? You will notice
that there are a lot of possible chords! What if I didn’t want to count all of them but just very special
chords?

First we need to talk a bit about music, since not all readers have a background in music. There
are 12 notes in traditional western music:

(1) C C# = Db D D# = Eb E F F# = Gb G G# = Ab A A# = Bb B.

We say C sharp for C# and D flat for Db. Those two notes sound the same1 but musicians like
to distinguish between them for historic and harmonic reasons. In this chapter we will ignore this
distinction. Sometimes we will also use numbers instead of notes:

C = 0, C# = 1, . . . , B = 11.

We call the distance between two notes in our list (1) a half-step.

After 12 half-steps (an octave) the notation repeats, because we hear those notes as very similar.
See Chapter 4 for more information about octaves and pitch. For the purpose of thinking about chords
we won’t distinguish between a higher sounding C and a lower sounding C. In our introduction,
Chapter 1, you will find an explanation for the standard music notation.

If we identify all notes that represent the same sound up to octaves, we can think of the notes
living around a circle, repeating over and over again, see Figure 6.1.

As a warm-up, we want to find all 3-chords that are “the most evenly spread out” around the
circle. This property is called maximally even and was first described by John Clough (Music
Theorist; - ) and Jack Douthett (Mathematician; - ) in 1991.

1in equal temperament
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Figure 6.1. Writing the Notes around the Circle.

1. Independent Investigation: How many different arrangements for evenly spread
out 3-chords are there total? Use Figure 6.2 to draw your solution. How about 4-chords,
5-chords, . . . ? Do you notice any pattern?

Figure 6.2. Draw your Table Arrangements

If you want to investigate more about maximally even chords, try the exercises in T. Johnson’s
book, [9].
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2. Chord Geometries and The Space of 2-Chords

Mathematics and music, the most sharply contrasted fields of scientific activity which can
be found, and yet related, supporting each other, as if to show forth the secret connection
which ties together all the activities of our mind, and which leads us to surmise that the
manifestations of the artist’s genius are but the unconscious expressions of a mysteriously
acting rationality.

Hermann von Helmholtz (German Physician and Physicist; 1821 - 1894)

Figure 6.3. Dmitri Tymoczko

Dmitiri Tymoczko is a Music Professor at Princeton University, see Figure 6.3, who has discovered
how to represent the universe of all possible musical chords in graphical form, [14]. In this section we
will investigate his program and figure out the mathematics behind his wonderful ideas.

Please go to the following link online and download the free software ChordGeometries by Dmitri
Tymoczko http://music.princeton.edu/~dmitri/ChordGeometries.html.

After you start the program ChordGeometries, go to Geometries and click on Dyadic Space. A
new window called mobius will open showing you a space of 2-chords, see Figure 6.4. If you click on
two keys of the piano, one of the points in the Moebius window will light up. Explore the space by
choosing different 2-chords and watching the point move in the mobius window.
On the above webpage you will find a link to a movie clip called “Deep Purple”, which plays the music
while you watch the 2-chords move through space. There are a few questions that come to mind (we
will answer them later in the investigations, for now just read them to see where we are going):

1. Every chord (point) has two numbers attached to it, how do we know which numbers corre-
spond to which chord?

2. When you type in two chords after each other, say C E on the lower part of the piano and G G
on the upper part, the path that the dot takes in the mobius window is rather complicated.
What is happening?

3. The points in space have different colors, from red over orange, yellow and green to blue.
What is the significance of the colors?
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Figure 6.4. Dyadic Space

4. Why is the window called “mobius”?

Many mathematicians prefer to deal with numbers rather than the musical letters, and the con-
vention is to identify C = 0, C# = 1, D = 2, D# = 3, E = 4, F = 5, F# = 6, G = 7, G# =
8, A = 9, Bb = 10, B = 11. What happens with the next C? We should call it 12 but on the other
hand we want every C to be the same when we think about chords. Mathematicians found a solution
for this problem, they just say that 12 is equivalent to 0 and write 12 ≡ 0.

2. If that is true, then what is 16 equivalent to?
3. If you would add two numbers what is the result equivalent to? For example, 8 + 4 = 12 ≡ 0.

Can you compute 9 + 6 ≡?

This new way of computing leads to an area in mathematics called Modular Arithmetic which
is used heavily in many parts of mathematics, for instance in number theory and in algebraic geometry.
You are actually using it every day, whenever you think about the clock! If you add 5 hours to 8
o’clock you get 13 o’clock but we usually call it 1 o’clock.

4. Did we just answer our first question? Go back to the program and try out if you understand
which number pair a 2-chord represents.

Do you remember how to draw the graph of a function using an x-axis and a y-axis? We will do
something similar here. Let’s take the 2-chord C# E, which corresponds to the number pair 1 4. We
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will draw two axes, the x-axis horizontally and the y-axis vertically. They meet at x = 0, y = 0 which
is called the origin. Start at the origin and go 1 to the right and then 4 up and draw a point. This
is your point in space which we label 1 4, see Figure 6.5.

Figure 6.5.

5. Find the points for the 2-chords G G, C G and A D# in the graph, Figure 6.5.
6. What happens if we continue on the x-axis towards the right, and we pass 11? What if we travel

to the left of the origin? Take a piece of paper and label it with more numbers on the x-axis,
at least 12 numbers to the left of the origin and 12 to the right of the origin. Now hold up
the paper and press the points together that should be identified on the x-axis because they
are equivalent. What shape do we get?

The next step is a bit tricky with paper, because we can’t stretch it as we would like. So either
you have to do this in your head or you can use a slinky to visualize the next step, see Figure 6.6.

Figure 6.6. Slinky
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7. Take your paper and label it additionally with more numbers on the y-axis, at least 12 numbers
above the origin and 12 below the origin. Bring it back into the shape that identifies all the
points on the x-axis and now, looking at the tube of paper in your hand, you have to identify
the corresponding points on the y-axis. What shape do you get? Can you draw a picture?

Mathematicians call this shape a torus. From the whole infinite 2-dimensional plane we really
only need the section that covers 0, . . . , 11 on the x-axis and 0, . . . , 11 on the y-axis, since everything
else overlaps with this region. We call this the Fundamental Domain , see Figure 6.7.
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Figure 6.7. Fundamental Domain of Musical Torus

This is great as an image for the space of 2-chords but doesn’t quite explain the mobius window
from ChordGeometries. So what are we missing?

8. Compare the numbers on our fundamental domain and the number in the mobius window. What
is the difference?

You probably found that we need to identify more points in our fundamental domain. We (the
authors) decided to work with the triangle underneath the diagonale in our fundamental domain. See
Figure 6.8. All the 2-chords in that triangle are the same as the ones above the diagonal, if we ignore
the order in which the notes are played. For instance 1 9 is the same as 9 1. Unfortunately, when we
look at just the lower triangle, we still don’t have the same region as in the mobius window. What
is happening? Here is a hint: Look at Figure 6.9. We cut our triangle under the diagonal into two

46



DRAFT c© 2013 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

4 3

11 11

11 10

10 11

10 10

11 9

11 8

11 7

11 6

11 5

11 4

11 3

11 2

11 1

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

9 11

9 10

9 9

9 8

9 7

9 6

9 5

9 4

9 3

9 2

9 1

8 11

8 10

8 9

8 8

8 7

8 6

8 5

8 4

8 3

8 2

8 1

7 11

7 10

7 9

7 8

7 7

7 6

7 5

7 4

7 3

7 2

7 1

6 11

6 10

6 9

6 8

6 7

6 6

6 5

6 4

6 3

6 2

6 1

5 11

5 10

5 9

5 8

5 7

5 6

5 5

5 4

5 3

5 2

4 11

4 10

4 9

4 8

4 7

4 6

4 5

4 4

3 11

3 10

3 9

3 8

3 7

3 6

3 5

2 11

2 10

2 9

2 8

2 7

2 6

1 11

1 10

1 9

1 8 

1 7

1 6

2 5

3 4

5 1

4 2

1 5

2 41 4

3 32 31 3

1 2 3 22 2

4 13 12 11 1

11

10

9

8

7

6

5

4

3

2

1

0

0 1110987654321

Figure 6.8. Fundamental Domain of Musical Torus with Triangles

pieces and compare the right one of the two pieces with the triangle that you can see under the x-axis.
Convince yourself that the 2-chords in these two areas are the same (up to order)!
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Figure 6.9. Fundamental Domain of Musical Torus with more Identifications
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Can you see the mobius window now? All this cutting and moving might make you wonder...

9. Cut out the square that has exactly the number pairs from the mobius window. Can you see how
two of its edges (sides) have the same number pairs? Glue the paper to itself connecting all
equal number pairs. Describe the shape you get.

The loop that you get was invented by August Ferdinand Moebius (German Mathematician and
Astronomer; 1790 - 1868) in 1858, although it was independently discovered by Johann Benedict
Listing (German Mathematician; 1808 - 1882), who published it, while Moebius did not. It is famous
for its property of having only one side.

10. Take a pen and draw a line starting anywhere on the strip, continuing along the strip. Will you
connect again with your original line? Why or why not?

Mathematicians say that the Moebius strip is non-orientable . See Figure 6.10. As mathematicians

Figure 6.10. Moebius Strip

we are excited to realize that the space of 2-chords is the same as the famous Moebius strip!

We answered two of our original four questions, but the others should be easier, now that we
understand the space of 2-chords better.

11. In question 2 on page 43 we were wondering why the path between some points in space is so
complicated. Can you answer this question now? It might help to look at the Moebius strip
instead of the Moebius window.

12. The last puzzle is the choice of colors in the moebius window. Here are two hints:
• Download the first Chopin video clip from the ChordGeomtries download page and notice

the choice of colors.
• Go back to Section 1 and connect your results from there with our color problem here.

We answered our 4 questions about the ChordGeometry program and have now a much deeper
understanding of the geometrical view on musical chords.
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3. Further Investigations

F1. How could a musician benefit from the knowledge of the geometry of chords? Why is this
research interesting to a mathematician? If you don’t know an answer interview some pro-
fessors!

F2. We want to play some music on the torus! If you take a curve (i.e. a curved line) on the
torus, you can think of it as a possibly curved line in your xy-coordinate system. Every point
corresponds to a 2-chord, so really your curve on the torus is a sequence of 2-chords.

Draw the two curves in Figure 6.11 in the xy-plane and then play the corresponding
2-chords on a piano.

Figure 6.11. 2 Curves on a Torus

F3. Now draw the diagonal x = y in the xy-plane. What does the curve look like on the torus?
Play the 2-chords on the piano.

F4. Compose your own torus music by creating a curve on the torus and playing the 2-chords.
Enjoy.
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CHAPTER 7

The Space of 3-Chords

A surprising proportion of mathematicians are accomplished musicians. Is it because music
and mathematics share patterns that are beautiful?

Martin Gardner (American Mathematics and Science Writer; 1914 - 2010)

1. Triadic Space

You successfully figured out the space of 2-chords. Here is a bigger challenge for you: Go to
ChordGeometries and click under Geometries on Triadic Space. Why does the space of 3-chords look
like a triangular prism? See Figure 7.1 for a screenshot of the triadic space.

Figure 7.1. Triadic Space

Before we start our investigation, go to Tymoczko’s website
http://music.princeton.edu/~dmitri/ChordGeometries.html and play the video clip Chopin through
4-dimensional space. Isn’t it beautiful? Tymoczko showed that a composer usually stays within a
range of some chords in triadic space and even found composer-specific patterns in the chord progres-
sions. The composers are probably unaware of these patterns but we can now see at least one aspect
that makes their music special ! Let’s see how his program works:
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1. Play with different 3-chords and see where the points appear in the prism. Can you see any
patterns? For instance, where are the major chords (interval pattern1 of 4 3)? Where are all
the unison chords (all notes the same)? Explain all the patterns you find in detail.

First we need to understand how we can draw something 3-dimensional. Every chord corresponds
now to 3 numbers, for instance C-major, C E G, equals (0 4 7). If you have Zome pieces (http:
//www.zometool.com) available, you can use the long blue pieces to make a big cube. Decide which
vertex (corner) should be the origin and label the 3 edges emanating from the origin with x, y and z.
Make sure that they follow the right hand rule: if the thumb points in the direction of the x-axis
then the index funger points into y-direction and the middle finger into z-direction. This is the typical
mathematical convention for 3-dimensional space. See Figure 7.2 for an example of the point (2 1 1)
in 3-dimensional space.

rgb]0,0,0(2 1 1)

rgb]0,0,0z

rgb]0,0,0y

rgb]0,0,0x
rgb]0,0,01rgb]0,0,02

rgb]0,0,01

rgb]0,0,02

rgb]0,0,01

rgb]0,0,02

Figure 7.2. Point (2 1 1) in 3-dimensional Space

Our goal is to find out how much of the 3 dimensional space we need so that each chord is
represented by exactly one point.

The first step that comes to mind is to ignore the repetition of notes on the axes. That means we
are just looking at one of the Zome boxes from before.

2. Imagine you walk inside that box (following a sequence of chords through space), if you walk out
the left side of the box, where do you enter the box again? What if you would fly through
the ceiling: where would you enter the box again?

The space you are looking at is called a 3-dimensional torus. As with the (2-dimensional)
torus that we saw before, we would like to glue some of its sides, but unfortunately we would need
4 dimensions to picture the result. Go to http://www.geometrygames.org/ and download the free
program Curves Spaces. Choose the basic 3-dimensional torus application to visualize what the inside
of a 3-dimensional torus looks like.

This is great! Unfortunately is doesn’t look like the triangular prism yet that we see in ChordGe-
ometries. What’s happening? As in the 2-dimensional case we have to consider that number triplets
like (0 4 7), (4 0 7), (7 4 0) and (0 7 4) represent the same chord. We will consider first just the two
triplets (0 4 7) and (4 0 7).

1The interval pattern records the distances between notes, measured in half notes. For instance the C-major

chord, C E G, has 4 half steps between C and G and 3 half steps between E and G.
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3. How can you change the first one to get the second one?
4. Now take an arbitrary triplet (x y z). If you change it in the same way, what do you get?
5. If we forget for a moment the third coordinate, you can picture the change of numbers in the

pairs (0 4) and (4 0) as a reflection at a diagonal. Draw a picture to convince yourself of this.

In the 3-dimensional case, there is a plane inside your box, such that reflecting (0 4 7) at that
plane will give you (4 0 7). The same will work for any point (x y z), giving (y x z).

6. Can you picture the plane inside your box? Use more of the Zome tools for diagonals (yellow
pieces) and some paper and tape to show that plane.

7. Find the plane of reflection for the other change (0 4 7)↔ (7 4 0).
8. Find the plane of reflection for the other change (0 4 7)↔ (0 7 4).

Can you see all three planes now in your box? It helps if you also show some of the boxes next to
your original box (even though all boxes are really the same). Then turn your box so that you look
down one of the diagonals and see if you can detect a triangular tube beween the planes. This is one
step closer to the triangular prism, since can see now where the triangle comes from!

9. Which number triplets lie on the main diagonal (going through the origin)?
10. Label some of the triplets on the diagonals in your boxes. Can you see why it is enough to just

take one piece of the triangular tube?

Congratulations, you now understand the space of 3-chords!
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