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Preface: Notes to the Explorer

Yes, that’s you - you’re the explorer.
“Explorer?”
Yes, explorer. And these notes are for you.
We could have addressed you as “reader,” but this is not a traditional book. Indeed, this book

cannot be read in the traditional sense. For this book is really a guide. It is a map. It is a route of
trail markers along a path through part of the world of mathematics. This book provides you, our
explorer, our heroine or hero, with a unique opportunity to explore this path - to take a surprising,
exciting, and beautiful journey along a meandering path through a mathematical continent named
the infinite. And this is a vast continent, not just one fixed, singular locale.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by dozens of exercises that closely mimic illustrative examples. Rather, after a brief
introduction to the chapter, the majority of each chapter is made up of Investigations. These
investigations are interwoven with brief surveys, narratives, or introductions for context. But
the Investigations form the heart of this book, your journey. In the form of a Socratic dialogue,
the Investigations ask you to explore. They ask you to discover the knot theory. This is not a
sightseeing tour, you will be the active one here. You will see mathematics the only way it can be
seen, with the eyes of the mind - your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling if
you are not forced to approach it in a mindless, stress-invoking, mechanical manner. In this journey
you will find the mathematical world to be quite different from the static barren landscape most
textbooks paint it to be. Mathematics is in the midst of a golden age - more mathematics is
discovered each day than in any time in its long history. Each year there are 50,000 mathematical
papers and books that are reviewed for Mathematical Reviews! Fermat’s Last Theorem, which is
considered in detail in Discovering that Art of Mathematics - Number Theory, was solved in 1993
after 350 years of intense struggle. The 1$ Million Poincaŕe conjecture, unanswered for over 100
years, was solved by Grigori Perleman (Russian mathematician; 1966 - ). In the time period
between when these words were written and when you read them it is quite likely that important
new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics is
beautiful. How can this happen? Well, they were busy learning mathematical skills, mathematical
reasoning, and mathematical applications. Arithmetical and statistical skills are useful skills ev-
erybody should possess. Who could argue with learning to reason? And we are all aware, to some
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degree or another, how mathematics shapes our technological society. But there is something more
to mathematics than its usefulness and utility. There is its beauty. And the beauty of mathematics
is one of its driving forces. As the famous Henri Poincaŕe (French mathematician; 1854 - 1912)
said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as both a liberal art and as a science. As a powerful science,
mathematics shapes our technological society and serves as an indispensable tool and language in
many fields. But it is not our purpose to explore these roles of mathematics here. This has been
done in many other fine, accessible books (e.g. [COM] and [TaAr]). Instead, our purpose here is
to journey down a path that values mathematics from its long tradition as a cornerstone of the
liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was rescued and preserved in monasteries. Knowledge
was categorized into the classical liberal arts and mathematics made up several of the seven
categories.1 During the Renaissance and the Scientific Revolution the importance of mathematics
as a science increased dramatically. Nonetheless, it also remained a central component of the liberal
arts during these periods. Indeed, mathematics has never lost its place within the liberal arts -
except in the contemporary classrooms and textbooks where the focus of attention has shifted
solely to the training of qualified mathematical scientists. If you are a student of the liberal arts
or if you simply want to study mathematics for its own sake, you should feel more at home on this
exploration than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more. In your exploration here you will see that mathematics is a human endeavor with its own
rich history of human struggle and accomplishment. You will see many of the other arts in non-
trivial roles: art and music to name two. There is also a fair share of philosophy and history.
Students in the humanities and social sciences, you should feel at home here too.

Mathematics is broad, dynamic, and connected to every area of study in one way or another.
There are places in mathematics for those in all areas of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

It is our hope that your discoveries and explorations along this path through the infinite will help
you glimpse some of this beauty. And we hope they will help you appreciate Russell’s claim that:

. . . The true spirit of delight, the exaltation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

1These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and
the trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy.
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Finally, it is our hope that these discoveries and explorations enable you to make mathematics a
real part of your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have served as
beacons to people who have explored the continents of mathematics throughout history.
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Navigating This Book

Before you begin, it will be helpful for us to briefly describe the set-up and conventions that are
used throughout this book.

As noted in the Preface, the fundamental part of this book is the Investigations. They are
the sequence of problems that will help guide you on your active exploration of mathematics. In
each chapter the investigations are numbered sequentially. You may work on these investigation
cooperatively in groups, they may often be part of homework, selected investigations may be solved
by your teacher for the purposes of illustration, or any of these and other combinations depending
on how your teacher decides to structure your learning experiences.

If you are stuck on an investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us: “If there is no struggle, there is no progress.” Keep
thinking about it, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Investigation numbers are bolded to help you identify the relationship between them.
Independent investigations are so-called to point out that the task is more significant than

the typical investigations. They may require more involved mathematical investigation, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections be-
tween mathematics and other fields - especially the liberal arts. Whether you complete a few of
the connections of your choice, all of the connections in each section, or are asked to find your own
connections is up to your teacher. But we hope that these connections will help you see how rich
mathematics’ connections are to the liberal arts, the fine arts, culture, and the human experience.

Further investigations, when included are meant to continue the investigations of the area in
question to a higher level. Often the level of sophistication of these investigations will be higher.
Additionally, our guidance will be more cursory.

Within each book in this series the chapters are chosen sequentially so there is a dominant theme
and direction to the book. However, it is often the case that chapters can be used independently
of one another - both within a given book and among books in the series. So you may find your
teacher choosing chapters from a number of different books - and even including “chapters” of
their own that they have created to craft a coherent course for you. More information on chapter
dependence within single books is available online.

Certain conventions are quite important to note. Because of the central role of proof in math-
ematics, definitions are essential. But different contexts suggest different degrees of formality. In
our text we use the following conventions regarding definitions:
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• An undefined term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An informal definition is italicized and bold faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A formal definition is bolded the first time it is used. This is a formal definition that
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a biographical name appears it is bolded and basic biographical
information is included parenthetically to provide some historical, cultural, and human connections.
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Chapter 1

Introduction

The human knot game is a popular game to use as an ice breaker or to plat at parties at parties.
In this game, a group of people join hands in a way that creates a human knot and then they try
to untangle themselves, without breaking the knot. It also has is very interesting mathematically,
so you will play it today in order to get to know some of your classmates and to start thinking
about mathematics. There are several different ways to play this game and we will use one that
has a bit of structure to it.

With the people at your table and people from a neighboring table, form circle with five or
more people and create a human knot as follows:

I. If your group has an even number of people, each person should grasp the right hand of a
person not their neighbor.

If your group has an odd number of people, everyone except for one should grasp the right
hand of a person who is not their neighbor. The remaining person should use their right
hand to grasp the left hand of another person. This step is illustrated in Figure 1.1

Figure 1.1: Setting up the human knot

II. Now everybody else should grasp the left hand of another person different from the person
whose right hand they grasped.

III. Now try to untangle the resulting knot without letting go of either of the hands you are
holding.This step is illustrated in Figure 1.2

1
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Figure 1.2: Untangling the human knot

When you are finished and your group has decided you are unable to untangle your knot have
either your instructor, or another student whose group has finished the activity, take an overhead
shot of your final position using a cell phone, you will need this a bit later.

1. How successful was your group at being able to untangle your knot? Explain.

2. How did your group decide whether or not you had untangled your knot?

3. Did you have discussions about what it meant to untangle your knot? If so, how, and what,
did you decide untangled meant? Did your notion of what untangled meant change as you
worked on this activity?

4. What strategies did you use to try and untangle your knot? What difficulties did you
encounter and how did you deal with them?

5. If you decided you were not able to untangle your knot, what made you decide you would
not be able to do so? Are you convinced that your group could never untangle your knot no
matter how long your tried? Why or why not? Include either a copy of the photograph of
your final position or a sketch of your final position in your notes.

2



Chapter 2

A Brief History of Knots

Mathematics is one of the deepest and most powerful expressions of pure human reason,
and, at the same time, the most fundamental resource for description and analysis of the
experiential world.

Hyman Bass (American Mathematician; 1932 - )

Knot theory has become one of the most popular and important areas of mathematics. It has
benefited from contributions by professional mathematicians, college students, amateur mathe-
maticians and both professionals and amateurs in other sciences. As with many areas of mathe-
matics, knot theory has its origins in attempts to describe the physical world; but it soon evolved
into a rich mathematical field.

Its origins date back to the mid 19th century. In 1858, Hermann von Helmholtz (German
mathematical physicist; 1821 - 1894) published an article in which he described motion in a perfect
fluid ; that is, a fluid that did not move or compress when an object moved through it and did not
generate any friction as the object moved. [2] Of course, such a fluid does not exist, so Helmholtz’s
discussion was purely theoretical, but even this type of theoretical analysis important because it
gives scientists a place to begin in examining the reality of the problem. In any event, one of
Helmholtz’s conclusions involved the movement of vortex rings and this perfect fluid.

Helmholtz’s paper was read by Peter Guthrie Tait (Scottish physicist; 1813 - 1901), and
Tait built a machine that created smoke rings, which behaved as Helmholtz had predicted. One of
Tait’s friends and collaborators was William Thomson (Scottish mathematician and physicist;
1824 - 1907) who, later on, was better known as Lord Kelvin . Thomson was very intrigued by
Tait’s machine and the stability of these smoke rings lead him to wonder if perhaps these rings
could be used to describe the nature of matter.[2] In January 1867 Thomson wrote to Helmholtz
detailing his idea:

The absolute permanence of the rotation [of vortex rings] ... shows that if there is
a perfect fluid all through space, constituting the substance of all matter, a vortex
ring would be as permanent as the solid atoms assumed by Lucretius (Roman poet
and philosopher; c. 99 - 55, BCE) and his followers (and predecessors) to account for
the permanent properties of bodies (as gold, lead, etc.) and the differences of their
characters ... Thus a long chain of vortex rings, or three rings, each running through
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each of the other, would give each very characteristic reactions upon other such kinetic
atoms.[4, pp. 513-516]

William Thomson (Scottish mathematician and physicist; 1824 - 1907)

Thomson eventually conjectured that different knots and links in the ether , an inert medium
that many scientists thought filled the universe, made up the different atoms. Thomson, Tait
and James Clerk Maxwell (Scottish mathematical physicist; 1831 - 1879), another, began a
program of research on Thomson’s conjecture. While Thomson and Maxwell began to investigate
the manner in which knots could create matter, Tait began to try to catalogue all knots with fewer
than eight crossings. [2] (The crossing number of a knot is the minimal number of times any
drawing of the knot has to cross over itself. We will investigate this in a later chapter.)

Tait recognized that different drawings of a knot could have different numbers of crossings.
Therefore, he had to be able to determine whether two different drawings represented the same
knot. Tait determined a method of describing knots and in 1876 published a table of all knots up
to seven crossings, along with the minimal diagram of the knot; the drawing of the knot with
the minimal number of crossings.[1] Amazingly, more advanced techniques developed in the 1920’s
showed that this table (and subsequent tables that Tait produced) were very accurate.[3]

Tait’s efforts inspired other people to create their own knot tables. The Reverend Thomas P.
Kirkman (British Mathematician; 1806 - 1895) sent Tait a table of all knots up to ten crossings.
(Interestingly, in a paper entitled “The Enumeration, Description, and Construction of Knots of
fewer than Ten Crossings”, Kirkman gave a 101-word definition of a knot.) C.N. Little (American
Mathematician; 1858 - 1923), a professor of civil engineering, created a table of knots up to ten
crossings and sent them to Tait.[1] Little and Tait corresponded and with encouragement by Tait,
Little classified alternating knots (knots where the crossings alternate between over and under
as you travel around the knot) up to eleven crossings. Over the next 25 years, Tait, Little and
Kirkman managed to catalogue alternating knots up to eleven crossings and non-alternating knots
up to ten crossings.[1]

In 1887 Albert Michelson (American Physicist; 1852 - 1931), and Edward Morley (Ameri-
can Chemist; 1838 - 1923), conducted a famous experiment that was designed, and failed, to detect
the ether. As a result, Thomson’s theory that atoms were made from knots in the ether faded and
was eventually abandoned by physicists in favor of the current model.[3] However, mathematicians
remained interested in knots and over the next century knot theory evolved into a popular and
dynamic area of mathematics.

In the following chapters we will explore some of the basic ideas and techniques in knot theory,
some of the ways knots have appeared in art, culture, and some of the recent scientific results
involving knot theory.

1. Knot theory arose from a scientific theory (that atoms were knots in the ether) that was
eventually abandoned. As scientific knowledge grows old, theories are abandoned in favor
of new developments. Often in retrospect, these abandoned theories seem silly. Do some
research and describe a scientific theory (other than the theory that atoms were knots in the
ether) that has been abandoned and now seems silly. Be sure to address the reasons why
the theory was abandoned. You should have several sources (other than Wikipedia) that
support your conclusions.

4



Chapter 3

Tangles R©

Our main tool in this course is a mathematical toy called a Tangle R©. Tangles R© are made from little
plastic pieces that form a quarter circle and can be snapped together as illustrated in Figure 3.1

Figure 3.1: Tangle R©

In addition to being very useful for understanding and studying knots due to their construction,
they are very interesting mathematically in their own right. In this first set of Investigations you
will study some of the properties of Tangles R©. In particular, we will study simple Tangles R©;
that is, those Tangles R© that form a single, closed, unknotted loop is illustrated in Figure 3.2.

3.1 Counting simple Tangles R©
.

To a mathematician, counting simple Tangles R© means determining the number of topologically
distinct shapes one can make with a given number of pieces. We say that two simple Tangles R© are
topologically distinct if it is impossible to deform one simple Tangle R© into the other without
taking it apart.

5
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Figure 3.2: A Simple Tangle R©

1. Begin exploring the number of pieces required to make a simple Tangle R© and the number
distinct shapes that can be made with each number of pieces. Sometimes there will be will
be two or more distinct shapes that can be made with a given number of pieces. Remember
that a simple Tangle R© must form a single, closed, unknotted loop.

2. Catalogue all of the different distinct simple Tangles R© that can be made with 10 or fewer
pieces. If there are two (or more) topologically distinct shapes for a particular number of
pieces, you should describe each shape in your notes with either words or pictures (one way
to do this is to use your cell phone to take a picture of each shape and include that your
notes) and explain how you know that the shapes you have found are topologically distinct.

3. Do you think there is a recognizable pattern in the number of topologically distinct simple
Tangles R©? Explain.

3.2 Planar Tangles R©
.

When confronted with a situation like the one you described in Investigation 3, mathematicians
often try to identify a similar, but (hopefully) easier, problem to solve. As you investigated the
number of topologically distinct simple Tangles R© in Investigation 2, you may have noticed that
some of the simple Tangles R© could be made to lie flat on the table. These flat simple Tangles R©
are called planar Tangles R©.

Can we find a pattern in the number of planar Tangles R©? The next few Investigations explore
this.

Note: When talking about planar Tangles R©, we require that the pieces fit flush
together, i.e. no small spaces occur at the spots where the Tangle R© pieces connect.

6
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4. Based on your table in Investigation 2, what numbers of pieces resulted in a planar Tangles R©?

5. Once you have more than 10 pieces, what is the smallest number of pieces required to create
a planar Tangle R©? Sketch the shapes in your notebook or use your cell phones to take a
picture of each shape for your notebook.

6. What is the next smallest number of pieces required to create a planar Tangle R©? Sketch
the shapes in your notebook or use your cell phones to take a picture of each shape for your
notebook.

7. Do you see a pattern in your answers to Investigations 4-6? If so, describe it.

8. Does the pattern you described in Investigation 7 account for every possible planar Tangle R©
or can you find planar Tangles R©whose number of pieces does not fit with this pattern?
Either explain why you believe your pattern accounts for every possible planar Tangle R©, or
find at least one example of a planar Tangle R© whose number of pieces does not fit with your
pattern. Draw a sketch these examples in your notebook or use your cell phones to take a
picture of each example for your notebook.

9. Classroom Discussion: Share your answers to Investigation 8 and either come to an
agreement as to why your pattern in Investigation 7 does, in fact, account for every possible
planar Tangle R©; or if there are examples of planar Tangles R© with an ”incorrect” number
of pieces, pick an example and decide whether this is a valid example or if there is some
illegitimacy to the planarness of this Tangle R©.

10. Based on your answers to Investigations 4-9, can you make an educated guess, or what is
commonly called a conjecture , about the number of pieces that can make a planar Tangle R©?

11. Explain why your conjecture in Investigation 10 should be true.

Hint: What is it about the shapes of the individual pieces that allows Tangles R© made with
a number of pieces that corresponds with your conjecture in Investigation 10 to be planar?

3.3 Counting planar Tangles R©
.

At the end of Section 3.2, you described a pattern about the number of pieces required to make
a planar Tangle R©. The next question a mathematician might ask is, given a specific number of
pieces, how many different planar Tangle R© shapes can be made with that number of pieces? Before
we begin, we need to determine what the word ”different” means in this context. In Section 3.1
we used the notion of topologically distinct as our basis for shapes being different. Will that work
here?

12. Based on your work for Investigation 5, are two planar Tangles R© that are made with the
same number of pieces topologically distinct? Explain.

7
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Based on your answer to Investigation 12, we need another notion of different. We will call
two planar Tangles R© geometrically distinct, if we can not change one planar Tangle R© into the
other by simply rotating or flipping it.

Note: The following set of questions are different than the questions in Section 3.1. Now we really
are interested in the different shapes that can be made to lie flat.

13. For each of the first four number of pieces that make planar Tangles R©, determine the number
of geometrically distinct planar Tangles R© shapes that can be made. Either sketch to use
you cell phone to take a picture of each of these shapes for your notebook.

14. Do you think there is a recognizable pattern in the number of geometrically distinct planar
Tangles R© shapes? Explain.

15. At this point things get more complicated. After the planar Tangles R© you considered in
Investigation 13, the next smallest planar Tangle R© has 31 geometrically distinct shapes.
Find as many of them as you can and include a picture of each shape.

To simplify our writing in what follows, we will call any Tangle R© made from n pieces an
n-Tangle R©.

We can use graph paper to draw each planar Tangle R© by using the outside edges of the squares
to guide our drawing of each Tangle R© piece. The main requirement is that the quarter circles
match up correctly as they would in a planar Tangle R©.

Here are two examples. We can match the planar 4-Tangle R© to a single square and the 8-
Tangle R© to a three squares as follows.

Figure 3.3: Fitting Tangles R© to squares

16. In Figure 3.4 there are six shapes made up from seven squares which we call 7-polyominos.
Some match up to planar n-Tangles R© you made for a specific value of n. Draw in the
Tangles R© to determine which shapes match up to n-Tangles R©. What is this value of n?
Why do some of the shapes match up and not others?

8
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Figure 3.4: Matching planar Tangles R© to shapes made from squares

It turns out that finding a formula that gives the number of planar n-Tangles R© for each value
of n is difficult. In fact, it is unclear whether this mathematical problem has been solved, and
Julian Fleron (American Mathematician; 1966 - ), has conjectured that this is related to a very
important and unsolved problem in another area of mathematics, the Polyomino Enumeration
Problem . This is a very old problem that essentially tries to count the number of distinct
polyominos, connected figures one can make with n squares with the requirement that each
square share at least one side with another square. For example, the figures in Figure 3.4 are
polyominos made from seven squares. Since these are made with seven squares, we call these
seven-polyominos.

Some of the above mentioned polyominos may look familiar to you if you have ever played
the computer game Tetris. However, the polyominos used in Tetris are made with four squares
(commonly called tetrominos) which are shown in Figure 3.5.

For those who have not played Tetris here is a simple description of how the game works. These
pieces drop down the computer screen, which is ten blocks wide, and the object of the game is to
rotate the pieces so that you can stack them as efficiently as possible at the bottom of the screen.
A screen shot of a partially played game is shown in Figure 3.6.
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Figure 3.5: Tetris Tetrominos

Every time a row is completely filled it disappears and the players score increases. For example,
in the picture in Figure 3.6, if the player rotates the dropping piece 90◦ counter-clockwise and can
drop it into the open spot in the second column, the second row will disappear. The game ends
when the pieces are stacked so high that no more can drop down.

This (seemingly) simple game has a connection to another very important unsolved problem
that has a $1,000,000 prize for its solution. Three computer scientists, Erik D. Demaine (Cana-
dian Computer Scientist; 1981 - ), Susan Hohenberger (American Computer Scientist; 1978 -
), and David Liben-Nowell (American Computer Scientist; 1977 - ), have determined that the
difficulty of a simplified version of this game puts it in a category called NP-complete [Pe]. This
essentially means that if someone could find an a procedure (or algorithm) that maximizes the
players score which can then be programmed into a computer that will run efficiently, then this
and other important problems can be easily solved. On the other hand, if some one could prove
no such program exists, then no such program exists for any of the related problems. This bigger
problem is called the P vs. NP problem and is one of seven problems, called the Millennium
Problems that have a $1,000,000 prize sponsored by the Clay Mathematics Institute (To find out
more about the Millennium Problems visit [C] or read [D]).

17. Are you surprised that playing with a mathematical toy (Tangles R©) is connected to a famous
unsolved mathematical problem that has a $1,000,000 prize? Explain.
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Figure 3.6: Tetris
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Chapter 4

Knot Projections and Knot
Equivalency

In the last chapter, we explored some of the properties of Tangles R©. This was important because
Tangles R© can be very valuable in exploring knots, and they will be our major tool this semester.
Now we want to move on to knots. Chapter 1 gave us an overview of the history of knot theory.
As we mentioned in that chapter, one of the fundamental problems in knot theory is tabulating
knots. However this is not so easy, because the same knot can have many different forms.

To adequately explore knots, we need to define some terms. What is a knot? In everyday terms
we know what a knot is. We use them everyday when we tie our shoes, or a ribbon on a package.
However, these leave two free strands at each end as shown below.

To a mathematician, this is uninteresting, because as long as there are two free ends we can
untangle the knot completely, no matter how complicated the original knot was. So to make the
situation interesting mathematically, we glue the two ends together to make a closed loop as shown
in Figure 4.2.

So informally, a knot is a knotted closed loop. There are more formal and technical definitions
for knots (see [L] for an example of a standard definition), but this will do for us. However, it
should be noted that these more technical definitions are necessary in order to prevent bizarre
examples from being classified as knots. The reason quotes were used in our definition of a knot
is because the simplest knot is a closed loop with no knot as shown Figure 4.3. This is called the
unknot or trivial knot.

One of the advantages of using the Tangles R© is that we can use them to make the knot and
then use that model to study the properties of the knot.

There are may ways to represent a knot. In Figure 4.4 there are several different representations
of the same knot.
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Figure 4.1: Everyday knot

A picture like the ones in Figure 4.4 is called a knot projection . Most of the projections in
this book will be drawn as in the first two pictures. The knots you make with your Tangles R© will
look like the one in the last picture. Be aware that because the Tangles R© are made with hard
plastic quarter circles, any knot you make will never look as smooth as the ones in the text.

Figure 4.5 shows a knot that we want to make with our Tangles R©. This picture looks compli-
cated so take a few minutes to think about how you would make this knot.

1. Now that youve thought about this for a little bit, make it with your Tangle R© and describe
how you made the knot.

2. Without playing with the knot you just made, do you think this knot can be untangled; that
is, can you make it into the unknot without taking it apart? Why or Why not?

3. Try to untangle the knot. Were you successful? If you were successful describe in words or
pictures how you untangled the knot. If you were not successful explain, as best you can,
why you could not untangle the knot.

You will need to make drawings of knots throught the text and the easiest projection for you
to draw is the one that looks like the picture below in Figure 4.6.
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Figure 4.2: A mathematical knot

Figure 4.3: The unknot or trivial knot

However, we need to be careful in how we draw the knot. For example, if we draw a knot like
the one shown in Figure 4.7, we do not know exactly what the knot looks like. In particular, we
have problems at the crossings. We cannot tell which part or strand , of the knot goes over the
other. To indicate which strand goes underneath and which one goes on top, we draw the strand
that goes underneath with a small space for the strand that goes on top as indicated in Figure 4.8.

Since there are two ways to draw each crossing and there are seven crossings, so there are

2× 2× 2× 2× 2× 2× 2 = 128

different projections associated with the drawing in Figure 4.7. Three of the possibilities are shown
in Figure 4.9.

A natural question to ask at this point is, do these three projections represent three different
knots or are they all the same knot?
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Figure 4.4: Different representations

4. Make each of the three knots shown in Figure 4.9 with your Tangle R© and try to deform it
into the other two knots without taking the knot apart. What happens in each case? Do
any of these projections represent the same knot? Explain.

Hopefully, you determined that two of the knots could be deformed into the unknot; in this
case we say that both projections are equivalent to the unknot. Like the term knot, the formal
definition of knot equivalency is very technical, but for us, we will say two knot projections are
equivalent if we can deform one projection into the other without cutting the knot, untying it;
and then tying it into the other knot and gluing the free ends together.

This is essentially the central problem in knot theory:

Central Problem. Is there a way to determine whether two knot projections represent distinct
knots or the same knot?

For all we know, perhaps every knot projection is trivial; i.e. it is equivalent to the unknot.
However, as you saw in Investigation 4, one of the three knots did not untangle. It simplified to
one of the most well known knots called the trefoil knot, (from the Latin word trifolium which
means three-leaved plant) which is shown in Figure 4.10.
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Figure 4.5: A complicated knot

The question of knot equivalency is much more subtle than it appears. For example, the two
knots in Figure 4.11 look very different but in fact, are equivalent.

This fact, which we will dscuss further in Chapter 5, was discovered in the 1973 by Ken Perko
(American Lawyer and amateur mathematician; 1943 - ).

it turns out that there is no way to determine for sure whether or not two knots are equivalent.
However, there are techniques that can help determine if two knot projections represent distinct
knots. This involves finding some property that every projection of one knot has but is not shared
by the other projection. A property that every projection of a knot has is called a knot invarient .
We will return to knot invarients in later chapters, but for now we will look at simple ways that
one can change the projection of a knot. The next three questions consider the three most basic
ways to change a knot projection. These basic moves, called the Reidemeister moves turn out
to be the only types of moves you need to transform a knot projection into any other equivalent
projection.

5. In Figure 4.12 are two projections of the trefoil knot. How is the second projection created
from the first?

6. In Figure 4.13 is another projection of the trefoil. How was it created from the original
projection of the trefoil?
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Figure 4.6: A knot projection

7. In Figure 4.14 is another projection of the trefoil, how was it created from the original
projection of the trefoil?

8. Use your answers to Investigations (5) - (7) to explain how a knot can have infinitely many
projections.

As your answer to Investigation 8) illustrates, a knot can have infinitely many projections.
Sometimes it is easy to determine that two projections are equivalent.

9. Use your Tangle R© to show that the two projections in Figure 4.15 are equivalent. That
is, make one of the knots with your Tangles R© and then deform it to look like the other.
In your notebook either describe in words or make a series of drawings showing how you
accomplished this it.

The trefoil knot, to which we will be referring to extensively throughout this book, has some
very interesting properties, one of which is illustrated in the following questions. In Figure 4.16
are two projections of the trefoil.
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Figure 4.7: An incomplete projection

10. Do you think that these projections are equivalent? Why or why not?

Now make trefoil A with your Tangles R© and then see if you can deform it into B.

11. How well did you succeed in turning projection A into B? Remember that the end result
needs to look exactly like projection B (including the over and under aspects of the crossings.)

12. Do you think these two projections are equivalent? Explain.

The two projections of the trefoil in Figure 4.16 are mirror images of each other; that is,
if you held one up to a mirror, the image would be the other and vice versa, just like your left
and right hand. We call A the left-handed trefoil and B the right-handed trefoil. Max Dehn
(German Mathematician; 1878 - 1952), proved in 1914 that the right and left-handed trefoils are
not equivalent to each other, but the proof of this is too complicated for this course, so we will
accept it as a fact.

13. Do you think it is possible for any knot to be equivalent to its mirror image? Explain.

14. Make a knot of your own design with your Tangles R© and draw a picture of it in your
notebook. Do not make this knot very complicated. Then use a mirror provided by the
professor to draw the mirror image of the knot you made in your notebook as well. Now
try to deform the knot you made into its mirror image. How successful were you in your
attempt to deform your knot into its mirror image? If you were successful in deforming the
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Figure 4.8: Examples of crossings

knot into its mirror image either describe how you accomplished this in words or by a series
of drawings in your notebook. If not, indicate whether or not you believe it is possible to
deform the knot into its mirror image and explain why you believe this.

15. Now repeat the process in Investigation 14 several times with different knots of your own
design and attempt to deform them into their mirror images. How successful were you in your
attempt to deform your knots into their mirror images? If you were successful in deforming
the knot into its mirror image either describe how you accomplished this in words or by a
series of drawings in your notebook. If not, indicate whether or not you believe it is possible
to deform the knot into its mirror image and explain why you believe this.

In Figure 4.17 are two projections of a knot called thefigure-eight knot .
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Figure 4.9: Three possible projections

16. Why do you think this knot is called the figure-eight knot?

17. Use your Tangle R© to make one of the two projections in Figure 4.17 and try to deform it into
the other projection. How successful were you in your attempt to deform the figure-eight
knot into its mirror image? If you were successful in deforming the knot into its mirror
image either describe how you accomplished this in words or by a series of drawings in your
notebook. If not, indicate whether or not you believe it is possible to deform the knot into
its mirror image and explain why you believe this.

In Investigations (14) - (17) you attempted to determine whether several knots were equivalent
to their mirror images. You may, or may not, have been successful in this endeavour. We say a
knot is chiral if it is not equivalent to its mirror image and amphichiral if it is equivalent to its
mirror image.

18. Of the knots you considered in Investigations (14) - (17), which ones are chiral? Which ones
are amphichiral?
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Figure 4.10: The trefoil knot

This notion of chirality is very important in chemistry. The physical configuration of many
molecules is chiral in the sense that they can not be deformed into their mirror images. We use the
terms left-handed and right-handed to distinguish between the mirror images of chiral molecules.
This difference turns out to be very important.

For example, all creatures use only right-handed sugars and left-handed amino acids [Pi]. Most
drugs have a left and a right-handed form. The pain reliever ibuprofen is chiral and the left-handed
version is one hundred times more powerful than the right-handed version. However, it is much too
expensive and difficult to create pills using only the left-handed version, so currently all ibuprofen
pills contain an equal amount of left and right-handed molecules [Pi]. Sometimes the mirror images
of a chemical are very different. The chemical Darvon is a painkiller and its mirror image, the
appropriately named Novrad, is a cough medicine.

Another (in)famous illustration involves the drug thalidomide. In the 1950s and 60s a German
pharmaceutical company, Chieme Grnenthal, began marketing the drug thalidomide as a sedative
for morning sickness in pregnant women. Unfortunately if thalidomide was taken between the
26th and 30th day of the pregnancy then birth defects were possible, and many infants were born
with various birth defects after their mothers had taken thalidomide. The types of birth defects
include abnormally short limbs with toes and fingers sprouting from other parts of the body,
flipper-like arms, eye and ear defects or malformed internal organs such as unsegmented small
or large intestines. Thalidomide is chiral, where the right-handed version is a strong tranquilizer
and the left-handed version causes birth defects. An added complication is that even if a dosage
consisting entirely of the right-handed version was administered to a pregnant woman, birth defects
would still result because her body would induce a chemical reaction that would change it into the
left-handed version [Pi].

There are important applications of the trefoil (and other knots) in other areas as well. Phoebe
Hoidn (Swiss ???; 19?? - ) and Andrzej Stasiak (Polish ???; 19?? - ) of the University of
Lausanne, Switzerland and Robert Kusner (American Mathematician; 1960 - ) of the University
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Figure 4.11: The Perko Pair

Figure 4.12: Two projections of the trefoil

of Massachusetts of Amherst have studied the properties of the trefoil and other knots made from
electrically charged filaments. It turns out that when the knot is charged it tightens into a very
small region on a perfect circle.

This property shows promise of helping scientists better understand the properties of electrons.
[P].

In the 1970s William Thurston (American Mathematician; 1946 - ) proved that the com-
plement of the figure-eight knot has a special structure called hyperbolic. By complement we
mean that we put a thickened up version of the knot inside a three-dimensional ball, and the
complement of the knot is this ball with the thickened up knot removed. This was a major discov-
ery and indirectly lead Thurston to make a famous and important conjecture in the 1980s called
the Geometrization Conjecture. In 2003 Grigori Perelman (Russian Mathematician; 1966 - )
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Figure 4.13: Two projections of the trefoil

Figure 4.14: Two projections of the trefoil

announced that he had proved Thurstons Geometrization Conjecture. An important consequence
of this is that Perelman had also proved the Poincaré Conjecture, one of the $1,000,000 Millennial
Prize Problems (see [C] or [D]). This work won Perlemann the 2006 Fields Medal , the mathe-
matical communitys version of the Nobel Prize. The Fields Medal, which comes with a $13,400
prize, is awarded every four years to a mathematician for important work done before he or she
turned 40. However, Perelman is a very reclusive mathematician and he did not attend the award
ceremony for the Fields Medal, has not claimed the monetary award or the $1,000,000 Millennium
Prize for solving the Poincare Conjecture. Upon hearing this Stephen Colbert (American Polit-
ical Satirist; 1964 - ), of Comedy Centrals Colbert Report, did a wonderful segment about “Donut
Math”. To see this clip go to the Comedy Central web page http://www.comedycentral.com and
search the Colbert Report video clips for “Cheating Death-Fields Medal”.

19. Make the trefoil knot (shown below in Figure 4.19) with your Tangles R©, and try to deform
it into the unknot. Describe what happens.
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Figure 4.15: Two projections of the trefoil

Figure 4.16: Two projections of the trefoil

20. How long did you try to deform the trefoil into the unknot?

21. Based on your answers to Investigations (19) and (20), do you think that the trefoil knot is,
or is not, equivalent to the unknot? Explain.

22. Have you established, beyond any doubt, your answer to Investigation 21? Explain.

The determination of whether the trefoil is distinct from the unknot will have to wait until
Chapter 8.
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Figure 4.17: Two projections of the figure-eight knot

Figure 4.18: What happens when a trefoil knot is charged
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Figure 4.19: Is this the unknot?
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Chapter 5

The Dowker Notation

How do we describe a knot? In particular, given a knot projection, is there a way to describe it so
that someone could draw an equivalent projection?

5.1 Determining the Dowker Notation from the knot pro-
jection

1. Write out a set of directions so that someone could use them to draw a projection that is
equivalent to the knot shown in Figure 5.1 without seeing a picture of the knot.

Figure 5.1: Unknown Knot

In the late 1970’s Hugh Dowker (Canadian Mathematician; 1912 - 1982), came up with a
notation to describe a projection. We will not use his exact notation, but a version that is a bit
easier with which to work.

First, we give the knot an orientation; that is, we choose a direction in which to travel around
the knot, and a starting point, P, as shown below.
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Figure 5.2: Choice of Orientation

We then move around the knot beginning at P in the direction indicated by the orientation,
labeling each of the crossings by the next integer as we move along the knot until we have returned
to the point at which we started.

An important aspect of this labeling is that the each numbers will be assigned either a + or a
− sign, depending on the crossing. If we pass through the crossing on the overstrand (as shown
below) we make the number positive (+).

Figure 5.3: Overcrossing

If we pass through the crossing on the understrand (as shown below) then we make the number
negative (−).
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Figure 5.4: Undercrossing

The first crossing we come to is on an overstrand so it will be labeled +1 as shown in Figure
5.5.

Figure 5.5: First Crossing Label

The next crossing will be assigned a 2; so we need to determine if it is +2 or −2. Since we are
on the understrand, it will be a −2 as illustrated in Figure 5.6.

We now move to the next crossing, since we are on the overstrand the number, 3, will be
positive as in Figure 5.7.

The next crossing will be assigned the number 4. In this case, we are passing through the
crossing on the understrand, so we assign it a −4 (Figure 5.8).
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Figure 5.6: Second Crossing Label

Figure 5.7: Third Crossing Label

2. Determine the numbers for the next five crossings.

The next crossing we come to after Investigation 2 is the one at which we began; but since we
are passing through the crossing on the understrand, we are not yet back to the point at which we
started, and so we will assign a −10 to this crossing in addition to the 1 as shown in Figure 5.9.

3. Assign numbers to the remaining crossings until you get back to the point P .

4. Explain why every crossing has two numbers.

5. Repeat the numbering process described above for the knot shown in Figure 5.10.

6. Ingoring the plus and minus signs, what do you notice about the pair of numbers at each
crossing?
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Figure 5.8: Third Crossing Label

Figure 5.9: Crossing Labels up to −10

In the next few questions you will work through the explanation of why your observation from
Investigation 6 is true. We will sketch out the ideas of the proof by looking at an example.
This example will illustrate the notion of proof by contradiction . That is, we will assume the
observation is false and then find that this leads to an impossible situation.

We begin by supposing there was a crossing at which both numbers were odd, say the numbers
+3 and −7. Now consider the loop of the knot formed by traversing the knot from this crossing
back to itself as shown below in Figure 5.11.

7. How many additional crossings must have been omitted from the loop in Figure 5.11 in order
to result in a labeling of +3 and −7 at the only crossing shown? Explain.

8. Draw a picture of this loop with additional crossings added in that is consistent with your
answer to Investigation 7. Since the over and under aspects of the crossings are not important
for this particular argument, you may draw them all with the loop as the overstrand.

9. Is it possible to give an orientation of the entire knot, from which this drawing is only a
piece, so that all of the strands you added in Investigation 8 can be oriented so that they
are all going from inside the loop to outside the loop or vice versa? Explain.
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10. Based on your answer to Investigation 9 and the fact that the knot must be connected (that
is, the knot is in one piece), what has to happen with the strands on the interior of the loop?
Is this possible for the picture you drew in Investigation 8? Explain.

11. Briefly explain why your answers to Investigations (7) - (10) illustrate why the two numbers
at any crossing must consist of one even number and one odd number.

12. Now that we have this labeling, what information do you think it can tell the person about
the knot? Moreover, why should the information conveyed by only the labels be enough for
someone to construct an equivalent projection of the knot? Explain.

The manner in which we convey this labeling information is called the Dowker notation for
a knot.

13. Independent Investigation: Pair up with another classmate and each of you should
choose 5 knots at random from the knot table in the back of the book. In this table the
knots are listed by the number of crossings. For example the notation 52 denotes the
second knot in the list with 5 crossings.

For this investigation, do not choose knots with more than 7 crossings. Then use the
labeling method we have described above to label each knot. Determine a way to organize
the label information so that someone could reconstruct the knot without seeing the
projection; then test your method of organization by asking your classmate to redraw the
knot based on the information you have given them. After your partner has reconstructed
each knot, they should make the knot with their Tangle R© and see if it is equivalent to
the knot you chose.

14. How succsessful were you in communicating information about the knots to your partner?
How successful were you at reconstructing the knots given to you by your partner?

There are lots of ways to represent the Dowker notation and if you were successful in doing so
then you may skip ahead to Investigation 15. If you would like some help in reorganizing your
information then continue on.

Figure 5.10: A 7-Crossing knot
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Figure 5.11: The loop formed by a crossing with two odd numbers

Going back to our first knot in Figure 5.1, your complete labeling should have looked like this:

5.1.1 Deriving The Notation

Because each crossing has two numbers, we want to take advantage of that in creating a way to
convey that information. Let us illustrate several ways to do this for our unknown knot and its
labeling shown in Figure 5.12.

Ordered Pair Notation

This knot has eight crossings. The simplest way to communicate the crossings is to list the number
pairs for the cossings. This is the style for the Dowker notation that we will, for the most part,
use throughout this book.

(+1,−10), (−2,+11), (+3,−4), (−5,+12), (+6,−13), (+7,−14), (−8,+15), (+9,−16)

Note that each crossing is listed only once and in this case they are organized by the lowest number
of the pair; that is, the crossings are listed in the order they are first labeled.
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Figure 5.12: Complete Labeling of our unknown knot

Numerical Order Table Notation

For this notation we list each crossing exactly once in a table with the lowest number of the pair
on the top row.

+1 −2 +3 −5 +6 +7 −8 +9
−10 +11 −4 +12 −13 −14 +15 −16

Even-Odd Table Notation

This is a variation of the most common form of the Dowker notation. In this notation the fact
that every crossing has an even and an odd number is used. Instead of listing the crossings in
the order they are labeled, they are listed with the odd numbers in order on the top row and the
corresponding even numbers listed below.1 We will use this notation in Section 5.3.

+1 +3 −5 +7 +9 +11 −13 +15
−10 −4 +12 −14 +16 −2 +6 −8

15. Find a Dowker notation for the knot in Investigation 5.

16. Find a Dowker notation for each of the two knots in Figure 5.13.

17. Redo Investigation 16, but this time start at a point on the opposite side for each knot.

18. Based on your answers to Investigations (16) and (17) is the Dowker notation unique? That
is, is there only one notation for each knot? Explain.

1The most common form of the Dowker notation lists just the even numbers whose order is determined by the
odd numbers. For this knot the notation would be −10 − 4 12 − 14 16 − 2 6 − 8. It is understood that the
corresponding odd numbers would be 1, 3, 5, 7, 9, 11, 13, 15 and if the even number has no sign the odd number
is negative and if the even number is negative the odd number is positive.
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Figure 5.13: Two 8 crossing knots

5.2 Reconstructing the knot from the Dowker Notation

In Section 5.1, we saw that we could describe a knot by a list of ordered pairs (see page 35), and
some of you may have been able to reconstruct a knot projection from the Dowker notation. In
this section we will explore in more detail how to do this reconstruction.

Suppose somebody gave us the Dowker notation

(−1,+6), (−2,+5), (−3,+8), (+4,−9), (+7,−10)

19. How many crossings are there in the knot we are interested in reconstructing? Explain.

20. Draw each crossing in your notes and use your Tangles R© and some masking tape to create
each crossing and the labels that go with it. For example, the first crossing listed in the
above notation might look like the drawing in Figure 5.14.

Figure 5.14: The first crossing
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21. Now determine how to connect these five crossings to form the knot. Remember that when
you connect strands from the crossings you must connect pieces that have consecutive num-
bers and you cannot create any new crossings when you form the knot.

22. Draw a projection of your knot in your notes and confirm that the Dowker notation for your
picture is the same as the one with which we started. You need to make sure you begin at
the crossing labeled with −1 and +6, and your orientation matches that of the orientation
implied in the notation.

23. Use the ideas above to draw a projection of the knot with the notation

(−1,+4), (+2,−7), (−3,+8), (−5,+10), (+6,−9)

24. Draw a projection of the knot with the notation

(+1,−6), (−2,+7), (+3,−8), (−4,+9), (+5,−10)

25. Draw a projection of the knot with the notation

(−1,+8), (+2,−7), (−3,+10), (+4,−13), (−5,+12), (+6,−11), (−9,+14)

26. Draw a projection of the knot with the notation

(−1, 6), (+2, 9), (+3,−14), (−4,+11), (−5,+16), (+7,−12), (−8,+13), (+10,−15)

27. In Investigations (23) (25) you drew projections of knots where all the even numbers had
the same sign (+ or −). What do you notice about the pattern of the crossings in these
knots as you move along the knot following the numbers in numerical order?

28. The types of knots in Investigations (23) (25) are called alternating knots. Explain why you
think this term is used.

5.3 When is the Dowker notation drawable?

A natural question for a mathematician to ask about the Dowker notation at this point, is whether
every possible Dowker notation results in a knot projection that is drawable. In this set, we will
explore this question. To make our lives easier we will only consider notations with all negative odd
numbers and all positive even numbers. We begin by determining all possible Dowker notations
for a three crossing knot projection.

29. What are the set of numbers that will be used for any potential three crossing Dowker
notation?

Before we start trying to come up with all the possible notations, we would like to determine
how many possible notations there are. To do this, we need an efficient way of counting the all
the possible notations with three crossings. The notation we have been using, the Ordered Pair
Notation, is not conducive to easily counting the total number of notations. In this case, the
Even-Odd Table Notation (page 36) is a better choice.
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We know that the crossings will have odd labels −1, −3 and −5 and then count the ways we
can match up the even numbers. One way to do this is with a branching diagram which is shown
in Figures 5.15 and 5.16. Each horizontal row will corresponds to the odd numbers for the three
crossings and the choices we have for the even labels based on the choices we have already made.
Since there are three possible even numbers to use as labels, we have three choices for the crossing
labeled with −1. This means our diagram will have three initial branches as shown below.

Figure 5.15: The first branches

30. After we have made our choice for the crossing with odd number −1, how many remaining
choices do we have for the crossing with odd number −3? Explain.

31. Explain how the branching diagram in Figure 5.16 illustrates our total possible choices for
the crossings labeled with −1 and −3.

Figure 5.16: The first and second branches
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32. After choosing the even numbers for the crossing labeled with −1 and then the crossing
labeled with −3, how many choices remain for the crossing with label −5? Explain.

33. Add this level to the branching diagram in Figure 5.16. To then determine the total number
of possible Dowker notations, we count the number of ends at the botom of our diagram.
For a knot with three crossings how many possible Dowker notations are there?

The branching diagram also allows us to write down, in an organized way all the possible
Dowker notations for a knot with three crossings. The left hand side gives us the odd numbers,
−1, −3, and −5 and to get the corresponding even numbers for each notation, we read down
each branch starting at the top, so for example the Dowker notation (using the Even-Odd Table
Notation) corresponding to the last branch on the right would be

−1 −3 −5
+6 +4 +2

This can be easily rewritten in the Ordered Pair Notation if you wish as follows:

(−1,+6), (+2,−5), (−3,+4)

34. Write down the remaining possible Dowker notations for a three crossing knot and then try
to reconstruct the knot projection for each possible notation. Are all of them drawable (that
is, does each notation result in a complete knot projection)? If not, which ones are not
drawable and why are you unable to complete the drawing?

Now that we’ve determined what happens with all possible Dowker notations for knots with
three crossings, we want to do the same analysis for knots with four crossings.

35. Use a branching diagram to determine the total number of possible Dowker notations for
knots with four crossings.

While the number of of possible Dowker notations for knots with four crossings which you
determined in Investigation 35 is not very large, it is too time consuming to try and draw all the
resulting projections. Instead we will take a random sample of these possible notations and see
what happens when we try to draw the resulting projections.

36. Choose 10 possible Dowker notations at random and try to draw each of the possible pro-
jections. Are all of them drawable? If not, which ones are not drawable and why are you
unable to complete the drawing?

37. Based on your answer to Investigation 36 do you think all of the possible Dowker notations
for knots with four crossings are drawable? Explain.

38. Based on your answers to Investigations (34) and (37) do you think every possible Dowker
notation for a knot (no matter how many crossings) is drawable? Explain.
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Now we want see what happens with all possible Dowker notations for knots with five crossings.
As was the case with knots that have four crossings, there are too many possible Dowker notations
to draw them all. In fact, there are too many possibilities to even use a branching diagram to
count them all. Fortunately there is another method to count the number of possible notations.
To figure this out, let us look back to our answer to Investigations (33) and (35). They key here
is to look at the number of choices we had for the even number at each crossing.

39. When determining the number of possible Dowker notations for knots with three crossings,
how many choices did you have for the even number for the crossing labeled with −1? How
many choices did you have for the even number for the crossing labeled with −3? How many
choices did you have for the even number for the crossing labeled with −5?

40. Make a conjecture about how you can combine your answers from Investigation 39 to get
the total number of possible Dowker notations for knots with three crossings.

Hint: Think about multiplication.

41. Now we want to see if we can extend the conjecture you made in Investigation 40 to counting
all possible Dowker notations for four crossing knots. How many choices did you have for
the even number for the crossing labeled with −1? How many choices did you have for
the even number for the crossing labeled with −3? How many choices did you have for the
even number for the crossing labeled with −5? How many choices did you have for the even
number for the crossing labeled with −7? Does the extension of the conjecture you made
in Investigation 40 give the correct number of possible Dowker notations for four crossing
knots? If not, revise your conjecture so that it gives the correct numbers of possible Dowker
notations for three and four crossing knots.

42. Based on your answer to Investigation 41 how many possible Dowker notations are there for
knots wth five crossings?

43. Create 10 possible Dowker notations for knots with five crossings.Remember you need to use
all the numbers −1, −3, −5, −7, −9, +2, +4, +6, +8 and +10; each odd number needs
to be paired with an even number and you can only use each number once. After you have
picked your 10 possible Dowker notations and try to draw each of the resulting projections.
Are all of them drawable? If not, which ones are not drawable and why are you unable to
complete the drawing?

Hint: When you are creating your 10 posible Dowker notations, you should avoid nota-
tions where one or more crossings are labeled with consecutive numbers. For example,
you should not use the possibility

(−1, 8), (+2,−3), (+4,−9), (−5,+6), (−7,+10)

because the pairs (2, 3) and (5, 6) contain consecutive numbers (ignoring the positive
and negative signs).

It turns out that many of the possible Dowker notations for knots with five crossing are not
drawable. As the number of crossings increase, the percentage of non-drawable notations increases.
This turned out to be a problem when mathematicians tried to catalogue knots in an orderly fashion
with more than 10 crossings, which will be considered in the next chapter.
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Chapter 6

Composite Knots and Knot
Enumeration

6.1 Composite Knots

The few knots we have studied so far are relatively simple knots. We can use these knots to build
more complicated knots, called composite knots. This construction is illustrated using the trefoil
knot and the figure-eight knot in the three steps below.

Step 1: Use your Tangles R© to make one copy of each of the knots in Figure 6.1. (You will
need half of your Tangle R©for one knot and half for the other knot).

Figure 6.1: The figure-eight knot and the trefoil

Step 2: Now remove a link from the right most loop of the figure-eight knot and a link from
the left most loop of the trefoil as shown in Figure 6.2.

43



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 6.2: The figure-eight and the trefoil knots with missing links

Step 3: Now join the two top loose ends and the bottom loose ends as shown in Figure 6.3.

Figure 6.3: The figure-eight and the trefoil joined together

This is called the composition of the figure eight knot and the trefoil knot.
Notation: If we denote the figure-eight knot by F and the trefoil knot by T , then we denote

the composition by F#T .

1. Let J and K be the two knots shown in Figure 6.4. Use your Tangles R© to make J#K and
then draw a copy of J#K in your notebook.
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Figure 6.4: The knots J and K.

2. Make the composition, T#U , of the trefoil, T , and the unknot, U , which are shown in
Figure 6.5 with your Tangles R©. What is the result?

Figure 6.5: The knots T and U .

3. Make the composition, U#F , of the unknot, U , and the figure-eight knot, F , which are
shown in Figure 6.6 with your Tangles R©. What is the result?

4. If H is any knot, what will be the result of the composition H#U where U is the unknot?
Explain.
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Figure 6.6: The knots U and F .

5. In Figures 6.7-6.9 are several pairs of nontrivial knots. For each pair, use your Tangles R©to
make them and then their composition. Are any of the composition knots equivalent to the
unknot? Explain.

a.

Figure 6.7: The knots F and J .

b.
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Figure 6.8: The knots M and N .

c.

Figure 6.9: The knots L and T .

Consider the composition, F#T , of the figure-eight knot F and the trefoil knot T from the
beginning of this section:

Suppose instead we had we made the composition in the reverse order, T#F as shown in
Figure 6.11.
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Figure 6.10: The Composite of the Figure-eight and the Trefoil, F#T

Figure 6.11: The Composite of the Trefoil and the Figure-eight, T#F

The next few questions will explore the relationship between F#T and T#F .

6. If we shrink T in the first composition F#T to a tiny knot as show in Figure 6.12

is this still equivalent to the composite knot F#T? Explain.

7. Now suppose we slide T around F as in Figure 6.13

is this knot still equivalent to F#T? Explain.

8. Based on your answers to Investigations 6-7 is F#T equivalent to T#F? Explain.

9. Does the order in which we do the composition matter? That is, if J and K are two knots,
are J#K and K#J distinct knots or are they equivalent? Explain.
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Figure 6.12: The Composite of the Figure-eight and a small Trefoil, F#T

6.2 Prime Knots

In the previous section we established an arithmetic for knots using composition. That is, for any
two knots K and J , then K#J is another knot such that K#J = J#K; and if U is the unknot
then for any knot K, U#K = K = K#U . This arithmetic should remind you of multiplication
in the whole numbers, {1,2,3,4, . . . }, with the unknot U playing the role of 1. Just like the
whole numbers under multiplication, there is no division in knot composition, because if K is a
nontrivial knot, then there is no nontrivial knot M such that K#M = U (as was suggested in
Investigation 5). The proof of this is very complicated and beyond the scope of this course. We
will accept this fact without proof.

This analogy with whole numbers extends even further. In the whole numbers the prime
numbers, {2,3,5,7,11,. . . }, are numbers that can not be factored except as 1 times itself. These
numbers form the building blocks of the whole numbers because every whole number can be written
uniquely as a product of prime numbers. For example, 60 = 2×2×3×5. Similarly, we can “factor
some knots into simpler knots. As illustrated in the following questions.

10. For each of the composite knots in Figure 6.14, the granny knot and the square knot ,
determine what two knots were composed to make each knot

11. The granny knot and the square knot are known to be distinct. Explain why your answer to
Investigation 10 supports this fact.

Hint: Recall what we said about the trefoil knot and its mirror image in Chapter 3.

Borrowing terminology from number theory, we say that knots that are not composed of two
or more simpler knots are called prime knots. Like the prime numbers, the prime knots form
the building blocks for more complicated knots. The unknot, the trefoil and the figure-eight knot
are examples of prime knots, whereas the granny and square knots are composite knots.
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Figure 6.13: The Composite, F#T , of the Figure-eight with the small Trefoil slid around to the
other side

Figure 6.14: The Granny Knot and the Square Knot

6.3 The Crossing Number of a Knot

In Chapter 5 we considered the Dowker notation of a knot. This notation is handy for describing a
particular projection. However, as we saw, there were some problems involved with this notation.
The most important problem to us is that the Dowker notation is not unique; that is, the same
projection can have more than one notation, depending on where you start. This is a big problem
because one of the major goals of knot theory is to create as complete a catalogue of knots as
possible. This task is essentially impossible, for technical reasons, so instead mathematicians have
worked on cataloguing prime knots. To do this effectively we need a notation that is unique for
each prime knot. Several different notations have been developed, but the most common notation
is one that goes back to Peter Guthrie Tait and is based on the crossing number of the knot. In
this section we will examine this notion.

We should point out that even though the Dowker notation is not suitable for creating a

50



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

catalogue of prime knots, it will provide a useful tool for us to make sure we account for all
possible knots with a given number of crossings. In order to count the knots accurately, you might
find the Even-Odd Table Notation (page 36) the most useful in this section.

12. Use the Dowker notation to write down notations for all possible projections with one cross-
ing. For this question you will need to consider the different over/under aspects of the
crossing. Draw these possibilities in your notebook. How many of these knot projections are
equivalent to the unknot? Explain.

13. Are there any nontrivial knots that have a projection with exactly one crossing? Explain.
Recall that nontrivial means the knot is not equivalent to the unknot (see page 13 for the
definition of a trvial knot).

14. Use the Dowker notation to write down notations for all possible projections with two cross-
ings. Draw these possibilities in your notebook. How many of these knot projections are
equivalent to the unknot? Explain.

15. Are there any nontrivial knots that have a projection with exactly two crossing? Explain.

16. Look back at some of the knots we have made and discussed in previous chapters, are there
any nontrivial knots that have a projection with exactly three crossings? Explain.

As we saw in Chapter 5 the crossings, in a very real sense, determine the projection and in turn
have some bearing on the specific knot created. A natural question to ask at this point is what
role does the number of crossings play in determining the knot? Recall that in Investigation 8
from Chapter 4 you determined that a knot can have a projection with an arbitrarily large number
of crossings. Now we would like to know if each knot has a projection with as few crossings as
possible.

17. Independent Investigation: Your teacher is going to give each group a pre-made
knot made out of string. How many crossings does this knot have? Is this the least
number of crossings required to make this knot? That is, are there crossings in this knot
that can be eliminated without changing the knot? If there are extraneous crossings,
determine how many crossings are actually necessary to make this knot, then draw
a projection with this number of crossings in your notebook. If no crossings can be
eliminated, explain how you determined this.

Now compare your results with the other groups in the class. Does each group have the
same number of crossings in their knot? More importantly, do you all have the same
knot? How do you know?

18. There is nothing special aboout the knot in the above Indepent Investigation; use the ideas
from your investigation to explain why any knot has a minimum number of crossings required
to make that specific knot. That is, for each knot there is a certain number of crossings that
any projection of that knot must have.
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We say that the crossing number of a knot is the least number of crossings in any projection
of that knot.

19. What is the crossing number of the unknot? Explain.

20. What is the crossing number of the knot you received in the above Independent Investigation?
Explain.

The crossing number of a knot has been the traditional way prime knots have been classified
since Tait published his first classification in 1876. To understand his classification we begin with
knots with as few crossings as possible.

21. How many distinct knots are there with 0 crossings? Explain.

22. Based on your answer to Investigation 13, how many distinct knots are there with 1 crossing?
Explain.

23. Based on your answer to Investigation 15, how many distinct knots are there with 2 crossings?
Explain.

These were relatively easy. After this, the counting gets harder. There are 48 possible config-
urations which could form a potential prime three crossing knot, and there are too many of these
to draw. We need to find a way to reduce this number the number of configurations we need to
consider. The Dowker notation (Chapter 5) will help us here.

24. To begin our analysis, consider the following three Dowker notations for possible three cross-
ing knots. For each notation, draw the knot and then explain why all of these notations
result in a projection that is equivalent to the unknot.

a. +1 +3 −5 b. −1 +3 −5 c. −1 −3 +5
−2 −4 +6 +4 −2 +6 +6 +2 −4

25. All of the projections in Investigation 24 are very similar in the way that they are drawn.
Look back at the Dowker notations and explain how this can be observed in the pairings of
the numbers in the Dowker notation.

26. Based on your answers to Investigation 25, explain what kind of pairings of numbers can we
ignore in trying to create a non-trivial three crossing knot.

27. To now determine how many distinct prime knots are there with 3 crossings, we can proceed
as follows:

a. Use your answer to Investigation 26 to write out all the remaining possible Dowker
notations for three crossing knots that avoid the pairings described in Investigation 26.

b. Use your Tangles R© to determine how many distinct 3-crossing knots there are.

28. Are any of the knots in Investigation 27b mirror images of each other?
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Because knots that are mirror images of each other are identical except for the crossings, we
will count mirror image knot pairs as one knot.

29. Given that mirror image pairs count as one knot, how many distinct prime 3-crossing knots
are there?

We now move on to four crossing knots.

30. Create several four crossing Dowker notations that have only one crossing with the type
of number pairing that you described in Investigation 26. Either draw the corresponding
projection or make them with your Tangles R©. Are all four crossings necessary? Explain.

31. Repeat the steps Investigation 27 to determine all distinct 4 crossing knots.

32. Are any of the knots in Investigation 31 mirror images of each other?

33. How many prime 4-crossing knots are there?

34. Use your answers to Investigations 21-33 to complete the following table.

Crossing Number Number of Knots
0
1
2
3
4

Table 6.1: Numbers of Distinct Prime Knots up to Four Crossings

35. Do you see any patterns in Table 6.1? Explain.

Tabulating prime knots becomes even more complicated after this point. Below is a table
detailing the number of distinct knots (ignoring mirror images) for crossing numbers 5− 16.

The number of knots for 0 − 9 crossings were discovered in the 1890’s by Peter G. Tait and
verified byJames Waddell Alexander (American Mathematician; 1888 - 1971) and Garland
Baird Briggs (American Mathematician; ?? - ??) in the 1920’s. In Appendix A is a table showing
all the knots with nine or fewer crossings.

The number of prime knots with 10 crossings was first announced by C.N. Little as 166.
However, in 1973, Ken Perko (American Lawyer, amateur mathematician; 1943 - ??) discovered
that the two 10 crossing knots shown in Figure 6.15, now called the Perko Pair , were actually
the same:
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Crossing Number Number of Knots
5 2
6 3
7 7
8 21
9 49
10 165
11 552
12 2,176
13 9,988
14 46,972
15 253,293
16 1,388,705

Table 6.2: Numbers of Distinct Knots for Crossings Numbers 5 - 16

Figure 6.15: The Perko Pair

36. Are you surprised an amateur mathematician discovered these two knots were equivalent 75
years after they were proclaimed as distinct? Explain.

37. Amateur mathematicians have made many important contributions to mathematics. Find
several articles, either in print or on the web, that detail contributions by contemporary
amateur mathematicians (i.e. people from the 20th century). For our purposes, an amateur
mathematician would be someone who does not have a Ph.D. in mathematics and whose
primary job is not in mathematics.

In 1970 John Conway (American Mathematician; 1939 - ) announced that he had tabulated
all the prime knots with 11 or fewer crossings in 1981 Alain Caudron (French Mathematician;
?? - ??) produced the first correct list of all prime knots with 11 or fewer crossings. Caudron’s
list corrected several errors in Conway’s list. From 1981− 1997 Morwen Thistlewaite (English
Mathematician; ?? - ??) used the Dowker notation and a computer to determine the number
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of prime knots with 12 − 15 crossings. In 1998 Thistlewaite, Jim Hoste (Mathematician; ?? -
??) and Jeff Weeks (American Mathematician; ?? - ??) also used the Dowker notation and a
computer to determine the number of prime knots with 16 crossings.

Unsolved Problem: How many 17 crossing prime knots are there?

6.4 Further Investigations

F1. Show that the Perko pair knots are equivalent by making the first with your Tangle R© and
then rearranging it to look like the second. Make drawings illustrating how you accomplished
this.
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Chapter 7

Exploring the Human Knot Game

There are many games that people can play involving ideas from knot theory. In this chapter, we
will consider a few of these and then examine the mathematics of these games.

7.1 Unlink the Strings

With a partner, cut two pieces string of similar length and tie a loop at each end of both stings
with a slip knot as shown in Figure 7.1.

Figure 7.1: A piece of string with a loop at each end

Now each person should place one loop of their string around each wrist, however, the strings
should be linked as shown in Figure 7.2.

The goal of this game is to unlink the strings with out removing the loops from each persons
wrist as shown below.
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Figure 7.2: Initial position for game

Figure 7.3: End position of game

1. How successful were you at unlinking the strings? Why do you think this is possible?

7.2 The Human Knot

The next knot game requires you to form a human knot and then try to untangle the resulting
knot or link, without breaking the knot or link. There are several different ways to play this game.
We will use one that has a bit of structure to it.

With the people at your table and people from a neighboring table, form circle with five or
more people. We will create a knot as follows:

I. If your group has an even number of people, each person should grasp the right hand of a
person not their neighbor.

If your group has an odd number of people, everyone except for one should grasp the right
hand of a person who is not their neighbor. The remaining person should use their right
hand to grasp the left hand of another person. This step is illustrated in Figure 7.4
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Figure 7.4: Setting up the human knot

II. Now everybody else should grasp the left hand of another person different from the person
whose right hand they grasped.

III. Now try to untangle the resulting knot.This step is illustrated in Figure 7.5

Figure 7.5: Untangling the human knot

2. How successful was your group at being able to untangle yourselves? Explain.

3. If you were not successful, did your group form a nontrivial knot? How do you know? Can
you identify the knot you did form?

The goal of this game, remember, is to untangle yourselves to form the trivial knot. A natural
question to ask at this point is, how likely is it that the original knot is equivalent to the unknot?
In the next few questions, you will explore this in more detail. The main ideas for this section were
presented by Laura Hutchinson, an undergraduate student at Union College in Schenectady, NY,
at the Fourteenth Annual Hudson River Undergraduate Mathematics Conference in April 2007
[Hu].

59



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

7.2.1 The Human Knot Game with Four People

Since is would be time consuming to continue playing this game with more and more people, we
will use our Tangles R©. We begin with the case there are four people playing. To examine the
possibilities in this case and the following, it will help to have an easy way to illustrate the different
ways a group can form a human knot. We will denote each person in the human knot by a dot,
and a line between two dots indicates that the two corresponding people are holding hands. Note
that the way the arms cross over and under each other are important in determining the knot, so
when we draw the diagrams we need to be clear when arms cross over and when the cross over.
One possible configuration for four people is indicated in Figure 7.6.

Figure 7.6: One possible configuration for four people forming a human knot.

4. Draw the four possible diagrams for the initial state when four people are playing (including
the possibility in Figure 7.6) in your notebook. Then make each knot with your Tangles R©
and attempt to untangle it. Which initial states, if any, are equivalent to the unknot?
Explain.

5. If only four people play the Human Knot Game, can they ever form a nontrivial knot?
Explain.

7.2.2 The Human Knot Game with Five People

Next, we want to explore the possibilities if five (5) people play the game. For example, in
Figure 7.7 are two distinct possibilities that can be formed with the same pairs of hands being
grasped.

6. Use your Tangles R© to determine if the two initial configurations in Figure 7.7 are equivalent
to each other and/or the unknot. Explain.

As you would expect, the over-under crossings complicate the analysis. To deal with this
complication, we will first ignore the over-under aspect of these configurations and simply find all
of the possible configurations.
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Figure 7.7: Two possible configurations for five people forming a human knot.

Let us label the people as vertices: A, B, C, D, and E. In this way the graphs in Figure 7.7
would have a labeled graph which looks as follows when we ignore the under and over aspects of
the crossings:

Figure 7.8: A five person configuration for a human knot, ignoring the over and under aspects of
the crossing.

Before we examine all the possibilities arising from the configuration in Figure 7.8, we wish to
examine some simpler cases. In the questions below you will be drawing diagrams similar to the
in Figure 7.8. In all diagrams you should label the vertices as in Figure 7.9:

7. If we ignore the over and under aspects of the crossings, how many different configurations
are there where A is holding hands with B? Draw each of these in your notebook. Note that
configurations that would be equivalent as knots need to be counted as distinct configurations
here.

8. If we ignore the over and under aspects of the crossings, how many different configurations
are there where A is holding hands with C? Draw each of these in your notebook.

9. If some of the configurations in Investigation 8 are identical to those from Investigation 7,
indicate which ones are redundant.
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Figure 7.9: Our labeling convention for the five person human knot configurations.

10. If we ignore the over and under aspects of the crossings, how many different configurations
are there where A is holding hands with D? Draw each of these in your notebook.

11. If some of the configurations in Investigation 10 are identical to those from Investigations 7
or 8, indicate which are redundant.

12. We have not checked those configurations where A is holding hands with E to find any final
configurations that may not have been accounted for. Either do this or explain why our list
is complete already.

13. In Investigations 7-12 you should have found 12 different configurations. Explain why eleven
of these configurations will always lead to an unknot regardless of the way the over and under
aspects of the crossings are formed.

Hint: How many crossings are needed to create a nontrivial knot?

The remaining configuration may or may not lead to an unknot, depending on the over and
under aspects of the crossings. We will use the Dowker notation to describe and distinguish the
various possibilities. (If you need a refresher on the Dowker notation, see Chapter 5.) Since the
Dowker notation requires an orientation, we put one on the graph beginning at the vertex A, as
shown in Figure 7.10. This gives us the “path ACEBDA.

Figure 7.10: Our orientation on the remaining configuration.
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Beginning at A we will follow the paths and label the crossings as we go over them. Recall
that with the Dowker notation, the numbers assigned to the over-crossing are given + sign and
the numbers assigned to an under-crossing are given − sign. Since we have not yet determined the
over and under crossings we will initially ignore the + and the − signs.

14. In your notes draw the diagram in Figure 7.10 and label the crossings as you come to them.
Note that there are five crossings so you should use the numbers 1− 10.

Now if you labeled the diagram correctly, the Dowker notation for each of the 32 possible
knots will be (±1,±6), (±3,±8), (±5,±10), (±7,±2), (±9,±4) (depending on how the crossings
are chosen).

We have two choices (depending on whether the odd number is positive or negative) for each
of the five crossings; thus, there are 2 × 2 × 2 × 2 × 2 = 25 = 32 possible initial configurations.
We can use the Dowker notation to enumerate these possibilities in an organized fashion and then
examine whether or not they are equivalent to the unknot. For example, one possible notation is
(−1,+6), (−3,+8), (+5,−10), (−7,+2), (−9,+4) We could then either modify the crossings in the
drawing in Figure 7.10 to show the corresponding projection as shown in Figure 7.11:

Figure 7.11: The projection corresponding to the notation
(−1,+6), (−3,+8), (+5,−10), (−7,+2), (−9,+4).

or we could draw the corresponding projection using the ideas from Chapter 5 as shown in
Figure 7.12:

15. Use the Dowker notation to determine the 32 possible initial configurations and then for
each configuration, draw a projection using either, a modified version the labeled diagram
as in Figure 7.11, or the ideas from Chapter 5 that corresponds to the Dowker notation as
in Figure ??.

Note: Try to find a method to determine these configurations in an orderly fashion. Re-
member the pairing of the numbers remains the same in each configuration. All you are
changing are which numbers are positive and which are negative. In addition, you can use
the notion of mirror image to reduce the number configurations you need to find.
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Figure 7.12: Another projection corresponding to the notation
(−1,+6), (−3,+8), (+5,−10), (−7,+2), (−9,+4).

16. Use your Tangles R© to construct each of the configurations from Investigation 15 and then
determine which configurations are equivalent to the unknot and which are not. For those
that are not equivalent to the unknot, determine the knot to which the configuration is
equivalent.

17. Based on your answers to Investigation 16, what is the probability that when five people join
hands in one of the 32 possible initial configurations corresponding to the graph in Figure 7.8,
they can untangle themselves? Explain.

18. Use the probability from Investigation 17 and your answer to Investigation 13 about the
additional 11 possible configurations to determine the probability that a random chosen
human knot will be equivalent to the unknot.
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Chapter 8

Distinguishing Knots:
Tricolorability and Reidemeister
Moves

In Chapter 4 we mentioned, but did not proved (despite developing strong circumstantial evidence),
that the trefoil knot is not equivalent to the unknot. Since then we have explored several aspects
of knots but have not discussed any tools for determining whether two different looking projections
are really different knots. It turns out that this is a very difficult question; in fact, at this point
in time there is no general method that will determine if two projections represent the same knot
or distinct knots. However, there are some tools that can help us determine when two projections
represent distinct knots. In this chapter we will explore one such tool, the notion of tricolorability.
This will help us finally show that the trefoil and the unknot are, in fact, distinct knots.

Before we begin, a quick note on knot projections. In previous chapters, our knot projections
looked like the knot in Figure 8.1.

Figure 8.1: Our previous way of illustrating a knot projection

In this chapter we will be using a different type of projection which is illustrated in Figure 8.2
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Figure 8.2: Our way of illustrating a knot projections in this chapter

8.1 Tricolorability

The notion of tricolorability involves, as you might expect, coloring a knot projection using three
different colors. However, there are important conditions on how the coloring may be done. The
first condition involves which parts of the projection are to be colored. A strand of a knot
projection is a section of the projection from one under-crossing to another. For example, in
Figure 8.3 the projection of the trefoil has three strands while the projection of the unknot only
has two strands.

Figure 8.3: Strands for a projection of the trefoil and a projection of the unknot

We say that a knot projection is tricolorable when three different colors are used in coloring
the entire knot such that each strand is colored one of the three colors and that at each crossing
either:

A. All three colors are used or

B. Only one color is used.

1. In Figure 8.4 are three knot projections which may or may not have been tricolored correctly.
For each projection explain why the tricoloring is either correct or incorrect.
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Figure 8.4: Three projections with potential tricolorings.

Just because one tricoloring is not correct, it does not follow that the projection is not tricol-
orable. If it is tricolorable, you many need to make several attempts before you find an appropriate
coloring. The trick here is to begin at a crossing where three strands meet and color each strand
a different color and then try to extend the coloring to the entire knot so that it satisfies either
condition A or B from above at each crossing. We illustrate this process using a projection of 85
knot, which is known to be tricolorable, beginning at the crossing labeled A as shown in Figure 8.5.

Figure 8.5: Beginning tricoloring of a projection of the 85 knot

We now look at the crossings that have one or two colors present and try to determine how to
color the other strand(s) at that crossing.

2. Which of the crossings labeled B, C, D, E, F, G or H would be the best crossing at which to
extend the coloring? Explain and indicate which strand and what color you will use.
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3. After coloring the strand you identified in Investigation 2, indicate the next crossing and
strand you where you will extend the coloring.

4. Continue the process described in Investigations 2-3 until the knot is tricolored; remembering
that there may be one or more crossings where only one coloring will appear.

5. The knot projection in Figure 8.4 that has an incorrect tricoloring is, in fact, known to be
tricolorable. Using the process described in Investigations 2-4 find a correct tricoloring.

6. The figure 8 knot, shown in Figure 8.6 is known to be not tricolorable. Try starting the
coloring process described in Investigations 2-4 at each of the four crossings, then describe
why each attempt results in an improper coloring.

Note: When determining that a knot projection is not tricolorable, you need to say
more than “I tried and wasn’t able to tricolor the knot.” It is important that you
explain why every attempt at tricoloring will fail.

Figure 8.6: The figure-eight knot
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7. Explain why the standard projection of the unknot, shown in Figure 8.7, is not tricolorable.

Figure 8.7: The unknot

8. Two non-standard projections of the trefoil and the unknot are shown in Figure 8.8. Is either
projection tricolorable? Explain.

Figure 8.8: Non-standard projections of the trefoil and the unknot.

9. Another pair of non-standard projections for the trefoil and the unknot are shown in Fig-
ure 8.9. Are either of these tricolorable? Explain.

10. Based on your answers to Investigations 1, 8 and 9, do you think every projection of the
trefoil knot can be tricolored? Explain.
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Figure 8.9: Another pair of non-standard projections of the trefoil and the unknot.

11. Based on your answers to Investigations 7-9 do you think any projection of the unknot can
be tricolored? Explain.

Your answers to Investigations 10 and 11 should suggest that if one projection of a knot is
tricolorable then any projection is tricolorable. This is, in fact, true and we will explain why in the
next section. Thus, tricolorability is a knot invariant . That is, tricolorability is not dependent
on the projection.

12. Explain why Investigations 10 and 11 combined with the discussion above allow us to con-
clude that the trefoil knot and the unknot are distinct knots.

13. Explain why Investigations 6 and 10 combined with the discussion above allow us to conclude
that the trefoil knot and the figure-eight knot are distinct knots.

14. Do Investigations 6 and 7 allow us to conclude that the unknot and the figure-eight knot are
equivalent? Explain.

15. Only two of the knots in Figure 8.10 are tricolorable. Determine which ones are tricolorable,
provide an appropriate coloring for the two that are tricolorable.

Figure 8.10: Three knot projections.

70



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

8.2 Reidemeister Moves

In the previous section we mentioned, after looking at several examples, that tricolorability is a
knot invariant. That is, if one projection of a knot is tricolorable, then so is every other projection
of that knot. However, we did not prove this. To establish that tricolorability is a knot invariant,
we need a way to show that if one projection of a knot is tricolorable then we can get to any other
equivalent projection in a way that preserves tricolorability.

In Chapter 4 we considered the notion of equivalency and we said that two knots were equivalent
if we could deform one knot into the other without taking it apart and retying it. For example,
we determined that the two projections of the trefoil shown in Figure 8.11 were equivalent.

Figure 8.11: Two projections of the trefoil.

Of course, not every group used exactly the same deformation, and this is okay, because each
group could replicate their work and you could show someone else how you did it. However, to
actually prove that tricolorability (and other properties) is an invariant, we need to find a procedure
that has a more rigid structure. What we need is a procedure that has a well-defined sequence of
steps that can be repeated by other people. Fortunately for us, such a procedure exists. In 1926
Kurt Reidemeister (German Mathematician; 1893 - 1971) proved that if two knot projections
are equivalent, then it is possible to get from one projection to the other in a finite sequence of
moves using only three basic types of moves, called (appropriately enough) Reidemeister moves
which are shown in Figure 8.12.
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16. In Investigations 5-7 from Chapter 4 you looked at three ways of transforming the trefoil
knot. Go back to these Investigations and identify which Reidemeister move was used in
each Investigation.

These three types of moves are all you need to be able to show two knot projections are
equivalent. In Figure 8.13 is an example of a sequence of Reidemeister moves which show that two
projections of the trefoil knot are equivalent. Note that all three moves can go in either direction.

In Figure 8.14 on page 80 is another example of a sequence of Reidemeister moves which show
that two projections of the figure-eight knot are equivalent.

17. As indicated in Figure 8.14, each step in the sequence of Reidemeister moves requires three
or four individual Reidemeister moves. For each step, use your Tangles R© do determine the
missing Reidemeister moves and draw the corresponding sequence of projections illustrating
the given Reidemeister moves. Note that the Reidemeister moves occur in the order listed
for each step.

18. In Figure 8.15 are two projections of the trefoil knot.

Explain in words how you can get from one projection to the other. (I dont want you to use
the Reidemeister moves here. That will come in the next Investigation.)

Now we would like to find a sequence of Reidemeister moves to go from the projection on the
left in Figure 8.15 to the other. This is a bit trickier. To get you started we will illustrate the first
three Reidemeister moves.

19. Complete the series of pictures (begun in Figure 8.16) illustrating the remaining Reidemeister
moves needed to show that the two projections of the trefoil knot in Investigation 18 are
equivalent.

20. Which procedure was easier, Investigation 18 or 19? Explain.

As you can see, finding the Reidemeister moves taking one projection to another is more
complicated than just deforming one projection into the other. However, as was mentioned above,
Kurt Reidemeister was able to prove in 1926 that two knot projections were equivalent if and only
if there was a finite combination of these three moves that deformed one knot projection into the
other. This proof is too difficult and long to cover in this class, so we will accept this fact without
proof.

Theorem 8.1 (Reidemeister, 1926). Two knot projections are equivalent if, and only if, there is
a finite sequence of Reidemeister moves that deforms one projection into the other.
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In practice if we have two equivalent projections, it is difficult to find a sequence of Reidemeister
that changes one knot projection into the other; but that is okay, because in practice we do not
do this. The real power and use of these moves lies in the fact that we can use these moves to
establish knot invariants. The following questions illustrate how this works.

21. Recall that the trefoil knot is tricolorable. Choose an appropriate tricoloring of the trefoil
shown below.

22. Perform a Type I move on the trefoil and draw the resulting projection. Is this new projection
tricolorable? If so, color your drawing appropriately; if not explain why.

Hint: Look at your answer to Investigation 8.

23. In Figure 8.18 a Type II move has been performed on the original trefoil projection from
Investigation 21. Is this new projection tricolorable? If so, color your drawing appropriately;
if not explain why.
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24. In Figure 8.19 another two Type II moves have been performed on the trefoil projection from
Figure 8.18. Is this new projection tricolorable? If so, color your drawing appropriately; if
not explain why.

25. In Figure 8.20 a Type III move has been performed on the trefoil projection from Figure 8.19.
Is this new projection tricolorable? If so, color your drawing appropriately; if not explain
why.
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26. Suppose we did a finite number Reidemeister moves in succession on a trefoil knot.

a. Is the resulting projection equivalent to the trefoil knot? Explain.

b. Based on your answers to Investigations 22-25 will the resulting projection be tricol-
orable? Explain.

27. There is nothing special about the trefoil knot. Suppose we know one projection of a knot
K is tricolorable. Explain why Theorem 8.1 and your answers from Investigations 21-26
suggest that any other projection of K is tricolorable.

Your answer to Investigation 27 is the general idea of the proof that tricolorability is a knot
invariant, it also illustrates the usefulness of the Reidemeister moves.

The power of tricolorability as a knot invariant lies in its ability to definitively say two knots
are not equivalent. The Investigations that follow illustrate how this works.

28. Use your answers to Investigations 6 and 27 above to decide if the figure-eight knot equivalent
to the trefoil knot. Explain.

29. Can we use tricolorability to show that two knots are the same? That is, if knots K and T
are either both tricolorable or not tricolorable, can we conclude that K and T are equivalent?
Explain.

Hint: Consider the unknot and the figure-eight knot.

Unfortunately the Reidemeister moves are just as problematic. The Reidemeister moves can
only tell us that two knot projections are equivalent; they cannot tell us if the projections represent
distinct knots. Just because we cannot find a sequence of Reidemeister moves taking one knot
projection to another that does not mean no such sequence exists; it might be that another two
or three moves will work.

One of the aspects of the Reidemeister moves that makes them difficult to work effectively with
is the fact that it is almost impossible to determine in advance how many Reidemeister moves it
will take to get from one projection of a knot to another projection of the same knot. However,
there was a remarkable theorem proved several years ago by Joel Hass (American Mathematician;
?? - ??) and Jeffery C. Lagarias (American Mathematician; ?? - ??) in 2001 that determines
the maximum number of Reidemeister moves needed to untangle a projection of the unknot.

Theorem 8.2 (2001, Hass, Lagarias, (HL)). For each integer n > 0, any projection of the unknot
with n crossings can be transformed to the standard trivial knot projection (a circle) using at most

2(10
11)×n Reidemeister moves.

What does this mean? This gives the maximum number of Reidemeister moves you will need to
untangle a knot projection that is equivalent to the unknot; in reality the number of Reidemeister
moves needed will be much less. For example consider the knot projection in Figure 8.21.

30. According to Theorem 8.2 what is the maximum number of Reidemeister moves needed to
untangle the projection in Figure 8.21?
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31. Use a series of drawings to show that the projection in Figure 8.21 can be untangled using
just three Reidemeister moves.

One of the surprising aspects of Theorem 8.2 is the size of the upper bound for the maximum
number of Reidemeister moves. The number 210

11×n will be a a huge number for any value of
n. The authors of Theorem 8.2 conceded that they could have found a smaller upper bound
for the maximum number of Reidemeister moves, but that number would have been much more
complicated to express. Before we discuss this theorem, we will try to get a sense of how big 210

11

is. For the sake of this discussion we will not worry about the value of n.

32. What happens when you try to use a calculator to find a value for 210
11

? Explain.

To get a better understanding of how big 210
11

really is, we will compare it to some other big
numbers.

33. Without determining this, if you determined the number of seconds you were alive, do you
think that would that be larger or smaller than 210

11

? Why?

34. Compute the number of days you have been alive.

35. Use your answer to Investigation 34 to compute the number of hours you have been alive
(for ease of computation, assume you were born at midnight on the morning of your birthday
and you are doing this computation at midnight tonight).

36. Determine the number of minutes you have been alive.

37. Determine the number of seconds you have been alive.

38. Was your conjecture in Investigation 33 correct? Explain.

39. The current estimated age of the universe is 13.7 billion years old. Without computing it, do
you think that the age of the universe in seconds is bigger or smaller than 210

11

? Explain.

40. Ignoring leap years, determine the estimated age of the universe in seconds. Was your
conjecture in Investigation 39 correct? Explain.

Hint: 210
11 ≈ 1030,102,999,566

41. Scientists have estimated the number of atoms in the universe. Do you think this number is
more or less than 210

11

? Explain.

42. Outside of class, use the internet or a science textbook to find the estimated number of atoms
in the universe. How accurate was your conjecture in Investigation 41?

As you can see, 210
11

is much more than many large numbers, so while Theorem 8.2 is not a
practical result, it illustrates an important point in mathematical research. When mathematicians
are looking at procedures like transforming one knot projection to another using Reidemeister
moves, the actual length of the procedure is not important, what matters is that we can put a
cap on the length of the procedure. This is sufficient to a theoretical mathematician, it means
the process can be completed in a finite amount of time. However, to an applied mathematician,
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engineer, computer scientist or anyone who wishes to practically use such a procedure, the actual
length is, of course, very important.

We would like to conclude this Chapter, by making one final observation. Theorem 8.2 concerns
the unknotting problem :

The Unknotting Problem. Is there a way to determine whether a given knot projection is
equivalent to the unknot?

This problem is a special case of the Central Problem in knot theory which we stated on page
16 in Chapter 4. The UnKnotting Problem has, in fact, bern solved. However, the solution
is not very practical in the sense that it can not be done efficiently. In 1999 Joel Hass, Jeffery
Legarias and Nicholas J. Pippenger (American Mathematician; 1943-present - p)roved that this
problem is in the class of problems, NP which we discussed on page 10 in Chapter 3.
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(a) Type I (twist - untwist)

(b) Type II (poke - unpoke)

(c) Type III (slide)

Figure 8.12: The Three Reidemeister Moves.
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Figure 8.13: A sequence of Reidemeister moves showing two projections of the trefoil knot are
equivalent
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Figure 8.14: A sequence of Reidemeister moves showing two projections of the figure-eight knot
are equivalent
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Figure 8.15: Two projections of the trefoil knot.

Figure 8.16: The first three Reidemeister moves of the sequence that shows the two projections of
the trefoil knot in Figure 8.15 are equivalent
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Figure 8.17: The trefoil knot.

Figure 8.18: The trefoil knot after a Type II move.

82



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 8.19: The trefoil knot after two more Type II moves.

Figure 8.20: The trefoil knot after a Type III move.

Figure 8.21: A projection of the unknot with 5 crossings.
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Chapter 9

The Unknotting Number of a
Knot

9.1 Changing a Knot Projection into the Unknot

As we mentioned in Chapter 4 it is difficult to determine if a projection of a knot is equivalent to
the unknot. A natural question to ask at this point is, instead of trying to determine if a knot
projection is equivalent to the unknot, is it at least possible to change a knot into the unknot by
changing some, but not all, of the crossings? It turns out that the answer is yes, and the procedure
is relatively easy. We will investigate this using the knot 820, which is shown in Figure 9.1.

Figure 9.1: The 820 Knot

As we did in Chapter 5, we pick a starting point, P, on the projection (not at a crossing) and
an orientation as shown in Figure 9.2.
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Figure 9.2: The 820 Knot with an Orientation

We start traveling along the projection at the point P in the direction indicated by the orien-
tation. We want to change only some of the crossings but not all, because if we change all of the
crossings, we just get the mirror image of the original knot projection. What we would like is a
set of directions that we can use for any knot projection which tell us which crossings to change
and which to leave alone; so that by following these directions, we change enough crossings (and
probably more than we need) to turn the projection into the unknot.

1. Describe a set of rules which tell you which crossings to change and which to leave alone that
you think will change the projection of the 820 knot into the unknot; and then try it out on
the projection in Figure 9.2 by making the new projection with your Tangle R© and see if it
is equivalent to the unknot.

Hint: As you travel around the projection from point P in the direction given by the
orientation, try to think of a simple rule to decide whether or not to change a crossing.
Also consider how you can determine when you are done and how to ensure that you
do knot change a crossing twice.

2. Did your rules from Investigation 1 work? Explain. If they did not work, rework them and
try again.

3. Once you have successfully unknotted the 820 knot, try your procedure from on several other
knots in the Appendix to be sure it works for other knot projections. If your procedure
doesn’t always work, keep reworking it until it does.

4. Explain why doing your procedure on any knot projection will always result in a projection
of an unknot.

9.2 The Unknotting Number

In Chapter 6, we used with the crossing number of a knot, which gives a measure of the knots
complexity, to help us tabulate knots. In this chapter, we will consider a related measure of a
knots complexity, the unknotting number of a knot.

5. Consider the trefoil knot shown in Figure 9.3.
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Figure 9.3: The Trefoil

Use the ideas from Chapter 8 to explain why the trefoil is not equivalent to the unknot.

6. Make the trefoil with your Tangle R© and then change exactly one of the crossings. What
happens?

7. The figure-eight knot is shown in Figure 9.4 . Make this knot with your Tangle R© and then
change one of the crossings. What happens?

Figure 9.4: The Figure-Eight Knot
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8. The 52 knot is shown in Figure 9.5. After making this knot with your Tangle R©, can you
find a crossing that when changed results in an unknot?

Figure 9.5: The 52 Knot

9. If you change a crossing on any knot projection, what do you think will happen? Explain.

10. The 51 knot is shown in Figure 9.6. After making this knot with your Tangle R©, can you
find a crossing that when changed results in the unknot?

Figure 9.6: The 51 Knot

11. Why do you think this happened? Which knot do you get when only one crossing of the 51
knot is changed?

12. How many crossings do you think you need to change in the 51 knot in order to get the
unknot? Explain.

13. Remake the 51 knot with your Tangle R© and test your conjecture. What happens?

The unknotting number of a knot K, denoted U(K), is the fewest number of crossing changes
in any projection that will make the (new) knot projection equivalent to the unknot.
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14. Explain why U(01), the unknotting number of the unknot, has to be zero.

15. Based on your answers to Investigations 6-8, what is the unknotting number of the trefoil,
the figure-eight knot, and the 52 knot?

16. Above we said that the unknotting number of a knot, K was the fewest number of crossing
changes in any projection of the knot that results in a projection. Explain why for the
trefoil, the figure-eight knot and the 52 knot, we do not need to check any other projections
to know their unknotting number.

17. What do your answers to Investigations 10-13 suggest is the value of U(51), the unknotting
number of the 51 knot? Explain.

18. Do your answers to Investigations 10-13 and 17 prove that we know the value of U(51)?
Explain.

Mathematicians have been able to prove that every projection of the 51 knot requires you to
change at least two crossings so in fact, U(51) = 2.

However, it is difficult to determine the unknotting number of a knot. The exact unknotting
number is unknown for many knots. For example, the unknotting number for the knot 1011 shown
in Figure 9.7 is either 2 or 3, but no one has been able to either find a projection where changing
only two crossings results in the unknot, or prove that such a projection does not exist.

Figure 9.7: The 1011 Knot

Another example is the 11a354 knot shown in Figure 9.8 for which the unknotting number is
either 2, 3 or 4.
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Figure 9.8: The 11a354 Knot

19. Use the projection of the 11a354 knot in Figure 9.8 to verify that U(11a354) ≤ 4. That is,
show that with this projection there are four crossings you can change so that the resulting
projection is equivalent to the unknot. In your notes, draw the knot and indicate which four
crossings you changed.

20. Explain why your work in Investigation 19 does not prove that U(11a354) = 4.

One problem in determining the unknotting number of a knot is the fact that sometimes
a projection with more crossings requires changing fewer crossings. To illustrate this problem,
consider the knot below which has 10 crossings.

While determining the unknotting number for a knot may be very difficult, your body knows
how to do it. Your DNA is coiled extremely tightly in your cells, which is called supercoiling. To
understand supercoiling, consider a telephone cord. It is normally coiled as shown in Figure 9.9a,
after a while though it coils up more as shown in Figure 9.9b.

(a) Normal coil (b) Supercoiled

Figure 9.9: Illustration of Supercoiling with a Telephone Chord
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Supercoiling is what allows DNA to fit inside a cell. In Figure 9.10a is a picture of uncoiled
circular DNA and in Figure 9.10b is a picture of what it looks after supercoiling takes place. Notice
how much smaller the supercoiled DNA is.

(a) Uncoiled DNA (b) Supercoiled DNA

Figure 9.10: Illustration of Supercoiling in DNA

The picture in Figure 9.11 is a photograph taken with an Electron Microscope of an E.coli
bacteria cell that has been opened. The cell is at the center and the thin strands are from the
DNA. Without supercoiling the DNA could not possibly fit into the cell.

Figure 9.11: Picture of the DNA of an E.Coli bacteria
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So what does this have to do with knots? When DNA becomes supercoiled it becomes very
tangled (possibly even knotted) and this creates difficulties during replication. To deal with this
supercoiling every organism has enzymes called Topoisomerase I and II. Topoisomerase II is the
enzyme that allows replication to take place by changing crossings at appropriate times and place.
It still is unclear how this enzyme knows where and when to change crossings.

Another problem in determining the unknotting number is the fact that sometimes a projection
with more crossings requires changing fewer crossings. To illustrate this problem, consider the two
projections shown in Figure 9.12

(a) Projection with 10 crossings (b) Projection with 14 crossings

Figure 9.12: Two projections of the same knot

It is known that every projection of this knot has at least 10 crossings. It is also known that
you need to change at least three of the crossings of the projection in Figure 9.12a to make the
unknot and that you only need to change two crossings of the projection in Figure 9.12b to make
the unknot.

21. Are you surprised that the projection in Figure 9.12b, which has more crossings, requires
fewer crossing changes than the one in Figure 9.12a in order to make the unknot? Explain.

9.3 Further Investigations

F1. Make the projection in Figure 9.12a with your Tangles R© and determine which three cross-
ings need to be changed in order to create the unknot; then make a drawing of the projection
and indicate which crossings you changed.

F2. Make the projection in Figure 9.12b with your Tangles R©and determine which two crossings
need to be changed in order to create the unknot; then make a drawing of the projection
indicate which crossings you changed.
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Table of Knots Up to 8 Crossings

0 31 41 51

52 61 62 63

71 72 73 74
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75 76 77 81

82 83 84 85

86 87 88 89

810 811 812 813
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814 815 816 817

818 819 820 821
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