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Somewhere something incredible is waiting to be known.

Carl Sagan (American astronomer and author; 1934 -
1996)

Live as if you were going to die tomorrow.

Learn as if you were going to live forever.

Mahatma Gandhi (Indian revolutionary and philosopher;
1869 - 1948)

Imagination is more important than knowledge.

Albert Einstein (German physicist, philosopher, and
author; 1879 - 1955)

Tell me and I’ll forget.

Show me and I may not remember.

Involve me, and I’ll understand.

Native American Saying
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Preface: Notes to the Explorer

Yes, that’s you - you’re the explorer.
“Explorer?”
Yes, explorer. And these notes are for you.
We could have addressed you as “reader,” but this is not a traditional book. Indeed, this book

cannot be read in the traditional sense. For this book is really a guide. It is a map. It is a route of
trail markers along a path through part of the world of mathematics. This book provides you, our
explorer, our heroine or hero, with a unique opportunity to explore this path - to take a surprising,
exciting, and beautiful journey along a meandering path through a mathematical continent named
the infinite. And this is a vast continent, not just one fixed, singular locale.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by dozens of exercises that closely mimic illustrative examples. Rather, after a brief
introduction to the chapter, the majority of each chapter is made up of Investigations. These
investigations are interwoven with brief surveys, narratives, or introductions for context. But the
Investigations form the heart of this book, your journey. In the form of a Socratic dialogue, the
Investigations ask you to explore. They ask you to discover the infinite. This is not a sightseeing
tour, you will be the active one here. You will see mathematics the only way it can be seen, with
the eyes of the mind - your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling if
you are not forced to approach it in a mindless, stress-invoking, mechanical manner. In this journey
you will find the mathematical world to be quite different from the static barren landscape most
textbooks paint it to be. Mathematics is in the midst of a golden age - more mathematics is
discovered each day than in any time in its long history. Each year there are 50,000 mathematical
papers and books that are reviewed for Mathematical Reviews! Fermat’s Last Theorem, which is
considered in detail in Discovering that Art of Mathematics - Number Theory, was solved in 1993
after 350 years of intense struggle. The 1$ Million Poincaŕe conjecture, unanswered for over 100
years, was solved by Grigori Perleman (Russian mathematician; 1966 - ). In the time period
between when these words were written and when you read them it is quite likely that important
new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics is
beautiful. How can this happen? Well, they were busy learning mathematical skills, mathematical
reasoning, and mathematical applications. Arithmetical and statistical skills are useful skills ev-
erybody should possess. Who could argue with learning to reason? And we are all aware, to some
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degree or another, how mathematics shapes our technological society. But there is something more
to mathematics than its usefulness and utility. There is its beauty. And the beauty of mathematics
is one of its driving forces. As the famous Henri Poincaŕe (French mathematician; 1854 - 1912)
said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as both a liberal art and as a science. As a powerful science,
mathematics shapes our technological society and serves as an indispensable tool and language in
many fields. But it is not our purpose to explore these roles of mathematics here. This has been
done in many other fine, accessible books (e.g. [COM] and [TaAr]). Instead, our purpose here is
to journey down a path that values mathematics from its long tradition as a cornerstone of the
liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was rescued and preserved in monasteries. Knowledge
was categorized into the classical liberal arts and mathematics made up several of the seven
categories.1 During the Renaissance and the Scientific Revolution the importance of mathematics
as a science increased dramatically. Nonetheless, it also remained a central component of the liberal
arts during these periods. Indeed, mathematics has never lost its place within the liberal arts -
except in the contemporary classrooms and textbooks where the focus of attention has shifted
solely to the training of qualified mathematical scientists. If you are a student of the liberal arts
or if you simply want to study mathematics for its own sake, you should feel more at home on this
exploration than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more. In your exploration here you will see that mathematics is a human endeavor with its own
rich history of human struggle and accomplishment. You will see many of the other arts in non-
trivial roles: art and music to name two. There is also a fair share of philosophy and history.
Students in the humanities and social sciences, you should feel at home here too.

Mathematics is broad, dynamic, and connected to every area of study in one way or another.
There are places in mathematics for those in all areas of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

It is my hope that your discoveries and explorations along this path through the infinite will help
you glimpse some of this beauty. And I hope they will help you appreciate Russell’s claim that:

. . . The true spirit of delight, the exaltation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

1These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and
the trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy.
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Finally, it is my hope that these discoveries and explorations enable you to make mathematics a
real part of your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have served as
beacons to people who have explored the continents of mathematics throughout history.
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The fear of infinity is a form of myopia that destroys the
possibility of seeing the actual infinite, even though it in its
highest form has created and sustains us, and in its secondary
transfinite forms occurs all around us and even inhabits our
minds.

Georg Cantor (German Mathematician; 1845 - 1918)

I am so in favor of the actual infinite that instead of admitting
that Nature abhors it, as is commonly said, I hold that Nature
makes frequent use of it everywhere, in order to show more
effectively the perfections of its Author. Thus I believe that
there is no part of matter which is not - I do not say divisible
- but actually divisible; and consequently the least particle
ought to be considered as a world full of an infinity of different
creatures.

George Cantor

xii



Navigating This Book

Before you begin, it will be helpful for us to briefly describe the set-up and conventions that are
used throughout this book.

As noted in the Preface, the fundamental part of this book is the Investigations. They are
the sequence of problems that will help guide you on your active exploration of mathematics. In
each chapter the investigations are numbered sequentially. You may work on these investigation
cooperatively in groups, they may often be part of homework, selected investigations may be solved
by your teacher for the purposes of illustration, or any of these and other combinations depending
on how your teacher decides to structure your learning experiences.

If you are stuck on an investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us: “If thee is no struggle, there is no progress.” Keep
thinking about it, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Investigation numbers are bolded to help you identify the relationship between them.
Independent investigations are so-called to point out that the task is more significant than

the typical investigations. They may require more involved mathematical investigation, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections be-
tween mathematics and other fields - especially the liberal arts. Whether you complete a few of
the connections of your choice, all of the connections in each section, or are asked to find your own
connections is up to your teacher. But we hope that these connections will help you see how rich
mathematics’ connections are to the liberal arts, the fine arts, culture, and the human experience.

Further investigations, when included are meant to continue the investigations of the area in
question to a higher level. Often the level of sophistication of these investigations will be higher.
Additionally, our guidance will be more cursory.

Within each book in this series the chapters are chosen sequentially so there is a dominant theme
and direction to the book. However, it is often the case that chapters can be used independently
of one another - both within a given book and among books in the series. So you may find your
teacher choosing chapters from a number of different books - and even including “chapters” of
their own that they have created to craft a coherent course for you. More information on chapter
dependence within single books is available online.

Certain conventions are quite important to note. Because of the central role of proof in math-
ematics, definitions are essential. But different contexts suggest different degrees of formality. In
our text we use the following conventions regarding definitions:
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• An undefined term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An informal definition is italicized and bold faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A formal definition is bolded the first time it is used. This is a formal definition that
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a biographical name appears it is bolded and basic biographical
information is included parenthetically to provide some historical, cultural, and human connections.
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Introduction: The Infinite and
New Number Systems

The infinite! No other question has ever moved so profoundly the spirit of man.

David Hilbert (; - )

To see the world in a grain of sand,

And heaven in a wild flower;

Hold infinity in the palm of your hand,

And eternity in an hour.

William Blake (; - )

The infinite is a mathematical and philosophical wonder that has beckoned the human intellect
from the earliest of times. Whether in relation to the apparent endlessness of space and time, the
identification of the infinite with God or Gods, or the unending divisibility of a line into smaller
and smaller parts, the infinite has stirred the imaginations of the smallest children, the greatest
philosophers, common (wo)men, and the most imminent mathematicians. The place of the infinite
in the history of human thought makes it a worthy and compelling topic.

There are many other reasons that we can give to motivate the study of the infinite - underlying
themes of this book.

0.1 Overcoming Fear

In the quote on the frontispiece Georg Cantor (; - ) called our fear of infinity “a myopia that
destroys the possibility of seeing the actual infinite.” In the Arts and Humanities there has been
no so fear. Poets have always been happy to write about the infinite. Artists have long used the
infinite in their work - in perspective drawing for one example. Clerics used it describing their
faith; Saint Augustine (; - ) said, “Every infinity is made finite to God.” In sharp contrast, the
philosophers deemed part of metaphysics. The scientists and mathematicians were much harsher,
attempting to banish it from the realm of their subjects:

I protest above all against the use of an infinite quntity as a completed one, which in
mathematics is never allowed. The Infinite is only a manner of speaking.

Carl Friedrich Gauss (; - )

Gauss is one of the greatest mathematicians of all time.
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Infinities and indivisibles transcend our finite understanding, the former on account of
their magnitude, the latter because of their smallness; Imagine what they are when
combined.

Galileo (; - )

Imagine, one of the most important figures in the Scientific Revolution - a period which provoked
radical changes in the way we think about our world - saying that the infinite transcends our
understanding.

In fact, as we shall see, it does not. The visionary work of Cantor lead to two new number
systems, the transfinite cardinals and the transfinite ordinals, both of which include infinitely many
different infinite numbers. His work in these areas has been called

. . . the finest product of mathematical genius and one of the supreme achievements of
purely intellectual human activity.2

David Hilbert (; - )

The infinite, says Shaughan Lavine (; - ):

. . . has been one of the main nutrients for the spectacular flowering of mathematics in
the twentieth century.

If we can understand the infinite, are there any limits to what we can understand? Are we too
quick to demonize what we think we cannot understand? How much do our prejudices constrain
our reasoning and imagination? What other “myopias” keep us from seeing what is really there?

These are important questions in any area of study; the history of the infinite provides us with
an enlightening example.

0.2 The Power of Ideas

Most of the fundamental ideas of a science are essentially simple, and may, as a rule, be
expressed in a language comprehensible to everyone.

Albert Einstein (; - )

Why do people risk their lives to climb Mount Everest. “Because it is there” goes the popular
saying. Well, the infinite is there too. You do not need to risk your life to explore it. You simply
need to use your mind, your imagination, you need to reason. Your exploration is cerebral.

Climbing mountains is good for the body, within reason, and probably good for the soul. If
we are to think, to learn, or to pursue any real intellectual pursuit we must explore and generate
ideas. Linus Pauling (American chemist, activist, and author; 1901 - 1994), one of only two
people to win Nobel prizes in two different areas - his were Chemistry and Peace - reminds us:

In order to have a good idea, you must have lots of ideas.

Your exploration here is meant to provoke many ideas - some good, some bad. It is also meant
to help you understand some of the most fantastic ideas of all time.

2Quoted in The History of Mathematics by David Burton.
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The basis of Cantor’s work on the infinite were “essentially simple” as Einstein said they should
be. He considered the basic question, “How many?” Insightfully he saw that he could quantify
this question by simple matching. He then proceeded logically to develop the transfinite cardinal
numbers. Starting with the equally basic question, “What’s next?” he similarly developed the
transfinite ordinal numbers. Attacked by many, as we shall see, he defended his theories:

My theory stands as firm as a rock; every arrow directed against it will return quickly
to its archer. How do I know this? Because I have studied it from all sides for many
years; because I have examined all objections which have ever been made against the
infinite numbers; and above all because I have followed its roots, so to speak, to the
first infallible cause of all created things.

We agree with Seymour Papert (American educator; - ) who tells us:

What matters most is. . . one comes to appreciate how certain ideas can be used as tools
to think with over a lifetime. One learns to enjoy and respect the power of powerful
ideas. One learns that the most powerful idea of all is the idea of powerful ideas.3

0.3 Understanding the Infinite is a Necessary Prerequisite
for Understanding Number.

The sections above motivate the infinite for somewhat general reasons, with full knowledge that
these motivations have had significant import in mathematics itself as well. Here we provide a
motivation that is purely mathematical. One that is absolutely fundamental.

Number seems like a naive, a priori notion. Yet the history of number does not bear this out.
Erwin Schrodinger (Physicist; - ) reminds us:

The idea of the continuum [i.e. the number line] seems simple to us. We have some-
how lost sight of the difficulties it implies...We are told such a number as 2 worried
Pythagoras and his school almost to exhaustion. Being used to such queer numbers
from early childhood, we must be careful not to form a low idea of the mathematical
intuition of these ancient sages, their worry was highly credible.

Here are some short vignettes of the tumultuous history of number:

• The Pythagorean order (circa 550 B.C.) was a strict, secret society we might call a cult in
contemporary terms. Their order revolved around intellectual, philosophical, and religious
pursuits. Central to all these pursuits was their motto “All is number.” It was widely
believed, and central to the Pythagorean faith, that all lengths could be described as ratios,
or fractions, of whole numbers. The discovery that

√
2, the length of the diagonal of a

square with one unit sides, is incommensurable - inadequately described by ratios of whole
numbers, “virtually demolished the basis for the Pythagorean faith in whole numbers.”4 The
discovery of such numbers, now called irrationals, was a “logical scandal” of such magnitude
that “Popular legend has it that the first Pythagorean to utter the unutterable [the existence

3From Mindstorms: Children, Computers and Powerful Ideas.
4Carl B. Boyer, in A History of Mathematics, John Wiley & Sons, 1968, p. 79.
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of incommensurables] to an outsider was murdered – thrown off a ship to drown.” 5 The
infinite is central to an understanding of the nature of the irrationals.

• As early as the first several centuries in the modern age Indian, Islamic and Chinese math-
ematicians utilized negative numbers. However, most European mathematicians considered
them to be “absurd numbers,” as Nicolas Choquet called them, well into the eighteenth
century.

• The crises initiated by the discovery of incommensurables has a lengthy history. In fact, close
to two millennia later the invention of calculus was mired in related difficulties caused by the
lack of a understanding of the infinitesimal, or infinitely small. These difficulties prompted
Bishop George Berkeley to write a scathing attack on the “infidel mathematicians” in which
he sneered, “And what are these same evanescent increments [infinitesimals]? They are
neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call
them the ghosts of departed quantities?”6 These difficulties were not overcome until the
nineteenth century Age of Analysis which saw many of history’s greatest mathematicians
focus their efforts on the nature of the infinite in the mathematical analysis of number.

• Lessons on square roots are usually replete with strenuous reminders not to attempt the
square root of negative numbers. Since positive times positive yields positive, as does negative
times negative, the square root of a negative number must be nonsensical the reasoning
goes. In fact, seventeenth century mathematicians hesitantly began to realize complex, or
imaginary, numbers such as sqrt−1 were extremely useful. 7 These numbers, called “a fine
and wonderful refuge of the divine spirit - almost an amphibian between being and non-
being” by G.W. Leibniz (; - ),8 have critical implications to the coherence and unity of

many branches of mathematics. One simple example is the quadratic formula −b±
√
b2−4ac
2a .

In the setting of complex numbers, this formula provides two solutions of the quadratic
equation ax2 + bx+ c = 0 without any worry about

√
b2 − 4ac involving a negative in the

radical.

• Cantor’s work on the infinite was motivated by practical mathematical questions that he
was considering. One of the surprising outcomes of his work is that those numbers that
make up the solutions to algebraic equations are an infinitesimal proportion of all real num-
bers. Said differently, almost all9 real numbers are not solutions to algebraic equations with
rational coefficients, they are transcendental numbers. The first number to be proven
transcendental was around 1850 and by the time Cantor showed that almost all numbers
were transcendental, only a few actual transcendentals were known. The proofs that π and
e are transcendental are celebrated results that were quite difficult to obtain. To this day,

5David M. Burton, in The History of Mathematics, Allyn and Bacon, Inc. Newton, MA, 1985, p. 123.
6from Berkeley’s “The Analyst: Or a Discourse Addressed to the Infidel Mathematician”, 1734.
7We denote this particular imaginary number by the symbol i. It has striking properties. Among them is the

equality eiπ + 1 = 0 which not only unifies the five most critical numbers in mathematics: 0, 1, e, i, and π; but
it also unites the most important relations and operations: equality, addition, multiplication, mulitiplication and
exponentiation.

8Leibniz as well known in many areas. He was a diplomat, philosopher, lawyer, mathematician, and scientist.
Among his notable accomplishments was the invention of calculus independently from Isaac Newton (; - ).

9This term has a formal mathematical definition. Here it is equivalent to saying that if you pick a number truly
at random from the number line the probability that it will be transcendental is 100%.
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our ability to construct transcendental numbers and to check whether given numbers are
transcendental is very limited.

We cannot understand the irrationals, the transcendentals, or the calculus without understand-
ing the infinite. Each involve infinite processes - which are fundamental to modern mathematics
and generally cannot be understood without the work of Cantor.

0.4 Mathematics: The Game of Thought

I love mathematics not only for its technical applications, but principally because it is beau-
tiful; because man has breathed his spirit of play into it, and because it has given him his
greatest game - the encompassing of the infinite.

Rosza Peter (Hungarian mathematician; 1905 - 1977)

Rosza Peter was an important founder of recursion theory. She was the first woman to become
an academic doctor of Mathematics in Hungary - a hotbed of twentieth century mathematics. She
struggled a great deal against Nazi oppression in the Second World War. A teacher in addition to
her research career, she wrote Playing with Infinity: Mathematical Explorations and Excursions. It
is a wonderful little book. The book you have in front of you shares many of the goals of this earlier
book - we just hope to get you much more actively involved with the playing and exploration.

You may not associate the word “playing” with mathematics. But it is a word that is used
quite often by mathematicians. And mathematicians are quite fond of games of all sorts. In this
series we have an entire book devoted to puzzles and games. 10 We hope that you will find much
of your exploration to be like play, like a game.

But we even end with an actual game - the Hackenbush game. This is an actual game which
was developed by John Horton Conway (English mathematician; - ) as a way to construct the
surreal numbers - a system of numbers that include both the infinitely large (Cantor’s ordinals)
and the infinitesimally small. With a game!

0.5 Enlightenment

Which of these motivations, or others you might find on your exploration, is most compelling to
you, we hope you will find:

The study of infinity is much more than a dry academic game. The intellectual pursuit
of the absolute infinity is, as Georg Cantor realized, a form of the souls quest for
God. Whether or not the goal is ever reached, an awareness of the process brings
enlightenment.11

Rudy Rucker (; - )

10Not surprisingly entitled Discovering the Art of Puzzles and Games.
11From Infinity and the Mind.
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Chapter 1

The Very Large. . .

Behold a Universe so immense that I am lost in it. I no longer know where I am. I am just
nothing at all. Our world is terrifying in its insignificance.

Bernard de Fontenelle (French Author; 1657 - 1757)

Words of wisdom are spoken by children at least as often as by scientists. The name “googol”
was invented by a child (Dr. Kasner’s nine-year-old nephew, Milton Sirotta) who was asked
to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was
very certain that this number was not infinite, and therefore equally sure that it had to have a
name. At the same time that he suggested “googol” he gave a name for a still larger number:
“Googolplex.”1

Edward Kasner (American Mathematician; 1878 - 1955)

James Newman (American Mathematician and Lawyer; 1907 - 1966)

1.1 Large Numbers and the Sand Reckoner

Mathematics has always been used as a tool to describe the world we live in. Although this aspect
is far from its sole purpose, it is important. Much of this importance arises from the ability of
mathematics to answer quantitative questions: how big, how high, how heavy, how strong, etc.

In a quantitative sense, the infinite must transcend everything that is finite. In terms of
numbers, it must be larger than any finite number no matter how large. If we are to appreciate
the infinite, a good place to start is by appreciating large numbers.

In early times quantifying large magnitudes was difficult. Such a task was considered in detail
by the great Greek mathematician Archimedes (Greek Mathematician, Physicist, Astronomer,
Engineer and Inventor; circa 287 B.C. - circa 212 B.C.) in the “Sand Reckoner”2:

There are some, King Gelon, who think that the number of the [grains of] sand is infinite
in multitude; and I mean by the sand not only that which exists about Syracuse and
the rest of Sicily but also that which is found in every region whether inhabited or

1From Mathematics and the Imagination, Simon and Schuster, 1940.
2In several of Archimedes’ great contributions we find germs of ideas that lead to the development of calculus

almost two millennia later. See Discovering the Art of Mathematics - Calculus in this series for more information.
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uninhabited... But I will try to show you by means of geometrical proofs, which you
will be able to follow, that, of the numbers named by me and given in the work which
I sent to Zeuxippus, some exceed not only the number of the mass of sand equal in
magnitude to the earth filled up in the way described, but also that of a mass equal in
magnitude to the universe.

Let us update Archimedes somewhat and find a number so large that it exceeds the number of
molecules in the entire observable universe.

Figure 1.1: The Hayden Sphere at the American Museum of Natural History in New York City; A
powerful vehicle for learning about the relative scales of things great and small. See Section 1.7.8
for more information.

Of course, we must base our calculation on some theory of the universe.3 The prevailing scien-
tific theory, the so-called Big Bang Theory, suggests that the universe began as a giant explosion
some 15 billion years ago. According to Einstein’s Theory of Relativity, the maximum velocity
that matter can travel is the speed of light : approximately 2.9979 × 108 m

sec . The observable
universe , the region from which light can reach us, is therefore a very large sphere. How big
might this sphere be? Our figure for the age of the universe is in years, so we would like to convert
the speed of light to a yearly distance. As there are 60 seconds in a minute we can convert the
speed of light to a distance per minute as follows:

Speed of light ≈
(

2.9979× 108
m

��sec

)(
60 ��sec

min

)
= 1.79874× 1010

m

min
.

Notice that the speed of light is now given in meters per minute. There is no reference to seconds,

3Here we will ignore a few more sophisticated cosmological issues that complicate the discussion. While these
may change the actual calculations, it is in only minor ways that do not fundamentally alter our ability to concisely
quantify an upper bound for the size of the observable universe.
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for these dimensions have canceled. We leave it to you (in Investigation 16) to show that in meters
per second the speed of light is:

Speed of light ≈ 9.45× 1015
m

year
.

Now, if the universe expanded for 15 billion years at the speed of light, the result would be a
spherical observable universe whose radius is:

r = (15× 109year)

(
9.45× 1015

m

���year

)
≈ 1.42× 1026m.

If this observable universe has the radius calculated above, we leave it to you (in Investigation 17)
to show it has a volume of:

V ≈ 1.20× 1079m3.

How many molecules could we pack into such a volume? What we know about the distribution
of matter in the universe suggests that such a volume packed with lead would safely overestimate
the true number of molecules in the universe.4

So we need to figure out how many molecules there are in a cubic meter of lead. The requisite
data for lead is a molecular mass of 207 g

mole and a density of 11.3 g
cm3 . Combined with Avagadro’s

number, 6.022× 1023moleculesmole , we calculate:

(11.3 �g
cm3 )(6.022× 1023molecules��mole )

207 �g��mole

≈ 3.29× 1022
molecules

cm3
= 3.29× 1028

molecules

m3
.

In other words, what this last calculation shows, is that each cubic meter of lead contains about
3.29 × 1028 molecules. We have about 1.20 × 1079 cubic meters to fill up. So if we filled up the
entire observable universe we’ve been considering with lead, the total number of molecules would
be about

(
1.20× 1079m3

)(
3.29× 1028

molecules

m3

)
≈ 3.95× 10107molecules.

This is not “much more” than a googol of molecules.

1.2 Large Numbers and Everyday Things

To get a better sense of the fairly large, let us begin with something we believe we know well:
time.

In the next five problems you are asked to estimate various quantities. First reactions are what
is desired, so you should make these estimates without performing any calculations.

4In contrast to our intuition, a cubic meter of aluminum consists of more than twenty times as many moleculres
as a cubic meter of lead. Can you find out why? And what is the most “molecular” element so we have an honest
upper bound?
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1. Quickly estimate how long you think one thousand seconds are in a more appropriate measure
of time.

2. Quickly estimate how long you think one million seconds are in a more appropriate measure
of time.

3. Quickly estimate how long you think one billion seconds are in a more appropriate measure
of time.

4. Quickly estimate how long you think one trillion seconds are in a more appropriate measure
of time.

5. Quickly estimate the number of seconds you have been alive.

6. Precisely determine how long one thousand seconds are in a more appropriate measure of
time.

7. Precisely determine how long one million seconds are in a more appropriate measure of time.

8. Precisely determine how long one billion seconds are in a more appropriate measure of time.

9. Precisely determine how long one trillion seconds are in a more appropriate measure of time.

10. What do Investigations 6-9 tell you about the relative size differences between thousands,
millions, billions and trillions?

11. Compute the number of seconds in one day.

12. Compute the number of seconds in one year.

13. Use Investigation 11 and Investigation 12 to precisely determine, within a hundred thousand
seconds or so, the number of seconds you have been alive.

14. How close were your estimates in Investigations 1-4 to the actual results in problems Inves-
tigations 6-9 and Investigation 13?

15. What does your answer to problem Investigation 14 tell you about your fluency with large
numbers?

16. Show that the speed of light in meters per second is, as stated in the text:

Speed of light ≈ 9.45× 1015
m

year
.

17. Show that the volume of sphere of radius r ≈ 1.42× 1026m is given by

V ≈ 1.20× 1079m3.

Money is something else we know fairly well, for good or ill. Let us consider some examples of
large sums of money.

Using newspaper reports, televised news reports, the Internet, or other source in your library
if necessary, find several specific items whose costs or budgets are:
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18. ... in the thousands of dollars.

19. ... in the millions of dollars.

20. ... in the billions of dollars.

21. ... in the trillions of dollars.

1.3 A Trillion Dollars in Human Terms

Here’s another example of large numbers, one with obvious human implications. It was developed
by Lou Jean Fleron (American Labor Educator; 1940 - ), mother of the first author, in the
1980’s. Those with an interest in the topic should feel free to update the numbers and/or change
the geographical regions to suit their purpose.

The population of several states is given in the table below:
Kansas 2,486,000
Missouri 5,138,000
Nebraska 1,585,000
Oklahoma 3,158,000
Iowa 2,787,000

You probably have friends and/or relatives who live in these states.
For each of the following questions find the desired quantities and give a single value for the

entirety of these five states considered together.

22. If we consider the average family size to be 4, how many total families are there in these
states?

23. What would the total cost be to build a $100,000 house for each of the families in thess
states?

24. What would the total cost be to give each of the families in these states a $15,000 car?

25. What would the total cost be to build a $5 million library and $15 million hospital in a total
of 250 cities in these states?

26. What would the total cost be to build a $10 million school in a total of 500 cities in these
states?

27. If you started with $1 trillion dollars and did all of the things described in Investigations 23-
26, how much money, if any, would be left?

28. If you put the left over balance calculated in Investigation 27 in the bank and earned 3%
interest per year, compounded yearly, how much interest would be earned each year? [Assume
the interest is not reinvested.]

29. If you used the yearly interest from Investigation 28 to pay doctors, nurses, teachers, police
officers, and firefighters each $40,000 a year salaries, how many such public servants could
you hire with the interest alone?

11
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30. Using Investigation 29, how many doctors, nurses, teachers, police officers, and firefighters
would the interest provide for each of 250 different cities in these states?

All of the costs you considered in Investigations 23-29 cost less than $1 trillion dollars. In
comparison, in each of the years 2002 - 2010 the United State national debt grew at least one-half
a trillion dollars. At 4:06:52 p.m. EST on 1/20/2010, as this was being typeset, the debt was
$12,325,889,768,889.98. Less than one minute later, the debt had grown by another $2,499,876!5

31. Find some information on the U.S. national debt currently and relate what you find to the
discussion of large numbers in a brief essay of a few paragraphs.

1.4 Innumeracy

In 1988 the book Innumeracy: Mathematical Illiteracy and Its Consequences by John Allen
Paulos (American Mathematician; 1945 - ) was released. The book was widely read and widely
praised, spending more than 5 months on the New York Times Best Seller list and rising as high
as #5 on this list. Translated into a dozen languages, the book continues to be influential.

As the title suggests, innumeracy is a quantitative analogue of illiteracy. In other words, it
is the inability to make sense of and reason with numbers and numerical quantities. Many believe
that this is a serious problem in modern society. As Paulos writes:

At least part of the motivation for any book is anger, and this book is no exception.
I’m distressed by a society which depends so completely on mathematics and science
and yet seems so indifferent to the innumeracy and scientific illiteracy of so many of
its citizens.

This short book contains hundreds of ways in which innumeracy misleads us into poor decision
making in regards to personal risk, financial decisions, assessment of statistics, and interpretation
of data. It is a powerful book.

Having discussed large numbers in several different contexts, it is appropriate for you to reflect
on the potential implications of innumeracy. Some suggested avenues for investigation are as
follows:

32. Independent Investigation: Examples from Innumeracy - Find the book Innumeracy and
read a few sections. Pick out an example that is particularly interesting to you. In a brief
essay, describe this example and consider the implications of such innumeracy.

33. Independent Investigation: Innumeracy Experiment - Survey a collection of your friends,
family, and peers to see how prevalent innumeracy is. Do this by describing your work with
large numbers and then telling them about the figures you found in Investigations 18-21.

5There are a number of debt clocks online, including http://www.brillig.com/debt_clock/.
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However, when you report your figures, interchange some of the terms millions, billions and
trillions so the figures are not correct. See what proportion of your audience catches on.
Describe your results and then discuss the societal impact of a populace who generally cannot
distinguish the words million, billion, and trillion when used in context.

34. Independent Investigation: Original Example - Create, develop, and/or find your own
example that illustrates innumeracy. Describe the example, its relevance, and its potential
impact on society.

35. Independent Investigation: Original Essay - Develop and answer your own essay prompt
that addresses the issue of innumeracy in a way that you find compelling, important, and/or
related to interests of yours.

1.5 Names of Some Really Large Numbers

This book is about the infinite. One trillion is pretty large in human terms, as we have just seen.
But it is dwarfed by a googol - a number named by a kid. Do other really large numbers have
names, like a “zillion” perhaps?

The majority of large number names that are commonly used, words like million, billion, and
trillion, were named systematically by Nicolas Chuquet (French Mathematician; 1445 - 1488)
circa 1484. Over time these names were extended. But the most remarkable extension came
just recently when this scheme was adapted to include numbers like millinilliontrillion by Allan
Wechsler (; - ), John H. Conway (British Mathematician; 1937 - ), and Richard K. Guy
(British Mathematician; 1916 - ) in the 1990’s. While these names might sound like part of a
mathematical Jabberwocky6, this extension, which includes a mneumonic scheme to name any
number no matter how large, is investigated systematically in the section ??? of the book Discov-
ering the Art of Mathematics - Patterns in this series.

The table below gives you a glimpse of some of the fabulous names. Some specific numbers
which had previously been named, like googol, googolplex and Skewes’, can be named by their
original name or their name in this scheme depending on context. Googol’s name in this scheme,
ten Duotrigintillion, does not roll off the tongue quite as nicely as googol.

1.6 Exponential Growth and Really Large Numbers

We’d like to construct some situations where really large numbers arise.

6The language of the non-sense poem from Through the Looking Glass. It is interesting to note that Alice’s
creator, Lewis Carroll (English author; 1832 - 1898) was an amateur mathematician and logician of some note.
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Thousand 1,000 103

Million 1,000,000 106

Billion 1,000,000,000 109

Trillion 1,000,000,000,000 1012

Quadrillion 1,000,000,000,000,000 1015

Quintillion 1,000,000,000,000,000,000 1018

Tredecillion 1, 000, ..., 000︸ ︷︷ ︸
42 zeroes

1042

Googol 1, 000, 000, ..., 000, 000︸ ︷︷ ︸
100 zeroes

10100

Octdecitrecentillion 1, 000, 000, 000, ..., 000, 000, 000︸ ︷︷ ︸
957 zeroes

10957

Millinillitrillion 1,000, 000, 000, 000, ..., 000, 000, 000, 000︸ ︷︷ ︸
3,000,012 zeroes

103,000,012

Googolplex 1,000, 000, 000, 000, 000, ..., 000, 000, 000, 000, 000︸ ︷︷ ︸
10100 zeroes

1010
100

Skewes’ Number 1,000, 000, 000, 000, 000, 000, ..., 000, 000, 000, 000, 000, 000︸ ︷︷ ︸
101034 zeroes

1010
1034

Figure 1.2: Names of selected large numbers

36. Take a blank sheet of 8 1/2” by 11” paper and fold it in half. Now fold it in half again. And
again. See how many such folds you can make, describing what limitations you face.

1.6.1 Britney Gallivan and the Paper-Folding Myth

Urban legend has it that the maximum number of times you can fold a piece of paper in half is
seven. Like many things, myths become “fact” when they hit the Internet - see the PBS entry http:

//pbskids.org/zoom/activities/phenom/paperfold.html. Like many such “truths”, they are
false.

In December, 2001 Britney Gallivan (American Student; 1985 - ) challenged this legend by
analyzing paper-folding mathematically and finding limits on the number of folds based on the
length, L, and thickness, t, of the material used. What she found is that in the limiting case the
number of folds, n, requires a material whose minimum length is

L =
π · t

6
(2n + 4)(2n − 1)].

Using this result she was able to fold paper with 11 folds and later with 12 folds.7 Subsequently,
Gallivan received quite a bit of noteriety: her story was mentioned in an episode of the CBS show
Numb3rs, was included on an episode of The Discovery Channel’s Myth Busters, and resulted in
her being invited to present the keynote address at the regional meeting of the National Council
of Teachers of Mathematics in Chicago in September, 2006.

7See http://pomonahistorical.org/12times.htm for more information.
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Figure 1.3: Britney Gallivan and paper folded 11 times.

37. After your first fold, how many layers thick is your folded paper?

38. After your second fold, how many layers thick is your folded paper?

39. After your third fold?

40. Continue a few more times until you see a clear pattern forming. Describe this pattern.

41. Suppose you folded your paper 20 times; how many layers thick would it be?

42. Suppose you folded your paper 30 times; how many layers thick would it be?

43. Use Investigations 37-42 to determine a closed-term algebriac expression for the number of
layers thick your folded paper will be after n folds.

44. How tall, in an appropriate unit of measure, is a pile of paper that has as many layers as the
folded paper you have described in Investigation 41? (Hint: a ream of paper, which is 500
sheets, is about 2 1/2” tall.)

45. How tall, in an appropriate unit of measure, is a pile of paper that has as many layers as the
folded paper you have described in Investigation 42?

46. How many folds are necessary for the number of layers to exceed a googol? Explain.

This paper folding example illustrates what is known as exponential growth because a quantity
grows by a fixed rate at each stage; i.e. we repeatedly multiply at each stage. We see it yields gi-
gantic numbers. If we want, we can built fantastically larger numbers by repeatedly exponentiating
at each stage.
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If we were to add the numbers below to the table in Figure 1.2, where would each of the
following numbers go?8

47. 1010.

48. 1010
10

.

49. 1010
1010

.

50. Is there any limit to the process described in Investigations 47-49? Explain.

51. Archimedes worked very hard to determine a way to write very large numbers. What do you
think his opinion of our modern notational systems might be?

While these numbers seem so large that they are inacessible, we can in fact learn things about
them. On 23 August, 2008 a group using a distributed computing9 program available through
the Great Internet Mersenne Prime Search (GIMPS) found the largest known prime number,
243,112,609−1, which is a whopping 12,978,189 digits long. As the discoverer, GIMPS was awarded
$100,000 by the Electronic Frontier Foundation for finding the first prime number of more than
10,000,000 digits. For more about the importance of primes in industry, finance, and cryotgraphy,
as well as more about Mersenne primes, see Discovering the Art of Mathematics - Number Theory
in this series.

52. Where does the Mersenne prime just described belong in the table of large numbers above?

1.7 Connections

1.7.1 History

Find out about some of the number systems used prior to the Enlightenment. Without the posi-
tional numbering system we use today or exponential notation, it would be tremendously hard to
write “simple” large numbers like a trillion. The “larger” large numbers we have considered here
would certainly be well out of reach.

53. Independent Investigation: In a brief essay, describe the advance that our modern systems
of numeration and notation made over the number systems used throughout most of the time
of humans on earth. How impressive of an advance is this?

8It is important to keep the order of operations correct. 1010
2

= 10100 which is much greater than
(
1010

)2
=(

1010
) (

1010
)

= 1020.
9For more, see Section 2.7 later in this chapter.
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1.7.2 Literature

In his famous short story “Library of Babel” noted fiction writer Jorge Luis Borge (Argentine
Author; 1899 - 1986) describes a library that contains every possible 410 page book which has
forty lines per page and eighty spaces per line. With a few adjustments for cover lettering and
other minor issues, such a library would contain about 101,834,097 volumes.10 Significantly smaller
than the largest known Mersenne prime, this library would contain

• A book of the story of your life through your current age.

• So many books whose first half contain the story of your life through the current time that
every possible second half of your life would also be described by a book in the library.

• A book of the complete history of the Earth through the current time.

• A book of the story of the lives of each of your as-yet-unborn children.

Extending far beyond our spatial capabilities, we can - with Borge’s help - imagine such a
library. It has finitely many volumes. And indeed, we have seen how to work with even larger
numbers. We have not yet reached the infinite, even though such a library would contains volumes
that describe essentially everything we might ever know.

1.7.3 Biology

DNA, the genetic blueprints for each living thing, can be thought of as long double chains whose
links are made up of one of four different bases: A (Adenine), C (Cytosine), G (Guanine), and T
(Thiamin). The length of a complete strand of human DNA is about 5, 000, 000 bases long. The
number of different combinations of 5, 000, 000 base pairs chosen from the four available bases is
about 103,012,048.

54. Independent Investigation: How does one determine the number of different possible
length 5, 000, 000 DNA strand combinations? Are two different random strings of 5, 000, 000
base pairs equally likely to resemble a human DNA strand or are there limitations to the
arrangements of the bases in humans? Since there are over 103,012,048 different combinations,
can you begin to see why people - all 7-plus billion of us - are all so different? Explain.

1.7.4 Probability

Archbishop Tillotson (English Clergyman and Archbishop; 1630 - 1694) asked:

How often might a man, after he had jumbled a set of letters in a bag, fling them out
upon the ground before they would fall into an exact poem, yea, or so much as make
a good discourse in prose. And may not a little book be as easily made by chance as
this great volume of the world?11

10The Unimaginable Mathematics of Borges’ Library of Babel by William Goldbloom Block, p. 18.
11Quoted on p. 413 of Essays on the Intellectual Powers of Man by Thomas Reid.

17



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

One often sees a more modern, comic rendition, a monkey sitting at a typewriter and outputting
pages of Shakespeare by typing at random. In fact, one can actually quantify how long it would
take for such a remarkable event to happen at random. Typing one letter per second, it would
take approximately 103,000,000 years for Sir Arthur Conan Doyle’s Hound of the Baskerville’s to
result in its entirety at random. 12

With the advent of computers we have access to much more data and this can often be used
in ways that don’t honor the underlying mathematical principles of probability. For example, in
1997 Michael Drosnin (American Journalist; 1946 - ) wrote The Bible Code which purported to
find a hidden code in the Hebrew bible which contains information about past and future world
events. The book became a best-seller despite the efforts of many to discredit the methods it used.13

Among other things, Brendan McKay (Australian Mathematician; 1951 - ) has published dozens
of so-called “predictions” foretold in Moby Dick by Hermann Melville (American Author; 1819
- 1891), including: exact information about the death of Diana Frances (Princess of Wales; 1961
- 1997) as well as the assasinations of John F. Kennedy (American President and Politician;
1917 - 1963), Martin Luther King, jr. (American Clergyman and Civil Rights Leader; 1929
- 1968), and even (in the future) Drosnin himself!14 Despite this outcry Drosnin published The
Bible Code II: The Countdown to recycle this poor idea and capitalize on the great losses and fear
in the aftermath of 9/11.

1.7.5 Political Science

In 1978 Dennis Livingston (; - ) and Stephen Rose (; - ) created a poster that illustrated the
“social stratification in the United States” by family income level. An updated “American Profile
Poster” is below in Figure 1.4. The poster, as shown, accounts for all families in the United States
whose combined income is below $150, 000 annually. At 8 feet tall - twice the height of the original
poster - one would find the last full icon representing the 190,000 people with annual income above
$300, 000. Despite this, there are over 20,000 whose annual income is over $10 million. At the
scale of the poster icons representing these people would have be displayed at the top of a poster
more than twenty stories high!

55. Independent Investigation: Displaying Large Number Data - Find out more about Rose’s
American Profile Poster or how other noteworthy statisticians, graphic designers, and artists
display large number data. One important candidate is Edward Rolf Tufte (American
Statitistican and Political Scientist; 1942 - ) who has written several well-known books about
the display of data.

12From “The Challenge of Large Numbers,” by Richard E. Crandall, Scientific American, Feb. 1997, pp. 74-8.
This article contains an interesting discussion of large numbers, large primes, and the use of modern computers in
relation to large numbers.

13See, e.g. “Book Review: The Bible Code” by Allyn Jackson, Notices of the American Mathematical Society,
Vol. 44, No. 8, September, 1997, pp. 935-8; “Comments on The Bible Code” by Shlomo Sternberg, Notices of the
American Mathematical Society, Vol. 44, No. 8, September, 1997, pp. 938-9, with Sternberg saying Drosnin and
his collaborators have, in perpetuating this “puerile nonsense”, “not only brought shame on themselves, they have
disgraced mathematics.”; “He Who Mines Data May Strike Fool’s Gold”, Peter Coy, Business Week , 16 June, 1997.

14See http://cs.anu.edu.au/~bdm/dilugim/diana.html and http://cs.anu.edu.au/~bdm/dilugim/moby.html

for details.
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Figure 1.4: Stephen J. Rose’s “American Profile Poster”.

1.7.6 Technology

In distributed computing researchers employ Internet-based interfaces to coordinate software which
allows them to run analysis programs on the home computers of volunteers when these computers
are idle. By joining the power of thousands of computers together and recycling idle computer
time at no cost, this has become a very powerful tool to help with mathematical and scientific
research. This includes the search for extraterrestial intelligence through the SETI@Home project
(see http://setiathome.ssl.berkeley.edu/), many important biological and medical efforts
(see e.g. http://www.hyper.net/dc-howto.html) and the search for large primes (GIMPS is at
http://www.mersenne.org/).

1.7.7 Astronomy

The book Powers of Ten was written by Philip Morrison (American astronomer, writer, and
activist; 1915 - 2005) and Phyllis Morrison (American teacher and author; - 200?) [?]. It is a
very powerful tour of the universe through a series of 41 brilliant pictures. Starting at 1025 meters
from Earth, each successive page is 10 times closer than the last and ends at a scale of 10−16

meters. We see the Milky Way galaxy come into focus, followed by our solar system, Earth, Lake
Shore Drive in Chicago, IL, a picnicking couple, skin cells, lymphocytes, DNA, and down past
atomic nuclei. It is a tour that leaves your understanding of the scale of universe forever changed.

Powers of Ten has spawned many reinterpretations.
Earth Zoom to Washington DC15 is a flip-book which provides a Powers of Ten like tour almost

as a movie. Another reinterpreation is part of the wonderful photo galleries of optical microscopy
at Molecular Expressions. Their “Secret Worlds: The Universe Within,” http://micro.magnet.

15Available only online from Optical Toys at http://www.opticaltoys.com/.
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fsu.edu/primer/java/scienceopticsu/powersof10/, is an interactive version of Powers of Ten
available as an interactive tutorial or screensaver. “Secret Worlds: The Universe Within” runs
from 10 million light years from Earth to the level of quarks. This is a range of 1023 meters to
10−16 meters.

56. Independent Investigation: Both Powers of Ten and ”Secret Worlds: The Universe
Within” use linear measures as their scale while we live in a three-dimensional world. Describe
how tours of the universe can be used to illustrate the procedure we used to find an upper
bound for the number of molecules in the observable universe.

1.7.8 Field Trip

Pictured in Figure 1.1, the Hayden Planetarium is remarkable for its aesthetic and architectural
brilliance. Its interior houses an IMax theater in the top hemisphere and a laser light emulation
of the Big Bang in its lower hemisphere. Around the exterior is a spiral path which takes museum
visitors on a tour of the scale of things great and small in our universe. Every 15 feet or so a scale
model of an important object (cellular nucleus, red blood cell, human being, Earth, solar system,
Milky Way galaxy) is compared to another important object whose relative size is equivalent to
the massive Hayden sphere that rests in front of you. A few more steps and the object that was
as large as the Hayden sphere is now small enough to be held in your hand while it is dwarfed by
something that much bigger in scale.

In many ways it is a tactile version of Powers of Ten.
Visit if you ever have the chance.

1.7.9 Children’s Literature

Children are fascinated by large numbers. David M. Schwartz (children’s author; - ), with the
help of a number of wonderful illustrators (Steven Kellog, Paul Miesel, and Marissa Moss), has
created a beautiful collection of books on large numbers including: How Much is a Million?,Mil-
lions to Measure, If You Made a Million, G is for Google: A Math Alphabet Book, and On Beyond
a Million: An Amazing Math Journey.
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Chapter 2

...and Beyond

Purely mathematical inquiry in itself...lifts the human mind into closer proximity with the
divine than is attainable through any other medium. Mathematics is the science of the infinite,
its goal the symbolic comprehension of the infinite with human, that is finite, means.1

Hermann Weyl (German Mathematician; 1885 - 1955)

Figure 2.1: “Yinfinity” by Julian F. Fleron.

In Chapter 1 we saw examples of very large numbers. We showed that the number of molecules
in the observable universe is less than 10107. We saw how gigantic this number was in human terms.
Yet we saw that this number was simply a garden-variety large number that was quickly eclipsed
by many of the truly large numbers we considered. In fact, we saw how to make massively larger

1Quoted on p. 108 [?]
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numbers. These numbers are well beyond human comprehension in a meaningful physical way. Yet
we name such gigantic numbers and even may hope to say something about them mathematically.

All of these numbers we considered, no matter how much they stretched the limitations of
how we might describe them, are finite. Not only are they finite, they are insignficantly small in
an important sense. Think of all of the whole numbers up to a googol. These numbers make up
exactly 0% of the numbers that remain beyond it!

Do we have any real way of understanding the infinite? If you think not, you would find your-
self in good company among philosophers, mathematicians and scientists through the nineteenth
century.

However, things change rapidly after that, as we shall see.
Let us begin our study of the infinite in a very familiar setting, with the natural numbers:

1, 2, 3, .... The infinitude of this collection of numbers is natural and obvious. Even the smallest
children, once they understand the central idea of counting, demonstrate their understanding of
the infinitude of this set by gloating that they can always find a number bigger than any one you
might pick. “Plus one,” they reply smugly.

The most commonly used symbol for the infinite is:

∞.

This symbol was first introduced by John Wallis (English mathematician; 1616 - 1703) in his
important Tractatus de sectionibux conicis and Arithmetica infinitorum, both appearing in 1655.2

Why did he choose this symbol? Is this an appropriate symbol?
The surviving Roman numeral for 1,000 is M. However, another prominent symbol was :.

1. Explain how the Roman symbol : may have given rise to the symbol ∞.

2. The most commonly used Roman numeral for 500 is D. How might this symbol be related
to :?

3. To make numbers larger than 1, 000 additional circles were added. So (:) was 10, 000.3

What would 100, 000 be? How long could this process be continued? Does this suggest a
different symbol for the infinite? Explain.

Karl Menninger (German mathematics teacher; 1898 - 1963) tells us in his encyclopedic
Number Words and Number Symbols: A Cultural History of Numbers that “at one time 100, 000
was the ‘last’ number known to the Romans.”4 It was denoted by ∞ enclosed under a u and the
use of this notation is part of the archeological record, appearing on a tablet from A.D. 36.5

4. How does Wallis’ choice of a ∞ for a symbol for the infinite relate to this historical fact?

5. Throughout history numerals used to represent numbers have often been closely related to
the words used to represent the number. For example, the Roman numeral C comes from

2See e.g., Boyer’s History of Mathematics, 1968, pp. 417-8.
3Menninger, 1969, p. 245.
41969 edition, p. 44.
5Menninger, 1969, p. 245.
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the Latin centum for hundred. What’s the last (lower case) character of the Greek alphabet.
How is this symbol visually related to ∞. Might this have something to do with the genesis
of the use of the symbol ∞? Explain.

6. In the days of Wallis, movable type pieces - small blocks of metal with a raised letter, numeral,
or figure on the top - were used in all printing presses. How might the use of the symbol ∞
be related to the extant type pieces of the time?

The shape of the symbol ∞ is now known as a lemniscate. This term comes from the Latin
lemniscus, which means hanging ribbon. Interestingly, this term was coined, in a mathematical
sense, to name an algebraic curve discovered by Jakob Bernoulli (Swiss mathematician; 1654 -
1705) in 1694 - almost 40 years after Wallis had begun using it as a symbol for the infinite. While
the lemniscate is more widely known as the symbol for infinity, it has a much more important
role in mathematics - part of the family of curves which helped give rise to the study of elliptic
functions; profoundly important mathematical objects. Additionally, the lemniscate is a special
type of Cassinian oval a family of curves which were discovered by Giovanni Domenico Cassini
(Italian mathematician and engineer; 1625 - 1712) in 1680. So the history of this symbol is
somewhat scattered.

7. What do you think of the symbol ∞ for the infinite? Do you like it? Do you find it
aesthetically pleasing? Does it seem to be an appropriate symbol? If not, can you think of
an alternative? Explain.

8. How is the artwork in Figure 2.1 related to the infinity symbol? Where might the name of
this art have come from?

So how does the symbol represent a “hanging ribbon”? From a sheet of paper cut two strips
each about 1

2 inch wide and about 12 inches long. Bring the two ends together to form a short
cylinder - a loop.

9. Tape one loop together. Take the other loop and give one end a half twist. Now tape the
ends together. How do these figures differ from each other? Explain.

10. You’ve created what is known as a Möbius band .6 Pick it up and hold one part of the
ribbon between your thumb and forefinger. Turn it around, viewing it from several different
vantage points. Can you see the infinity symbol represented?

11. The Möbius band is actually a marvelous and surprising mathematical object.7 How many
“sides” do you think the Möbius band has? With a pen or a pencil, draw a stripe down the
middle of the Möbius band. Continue drawing, without picking your pen or pencil up, until
you have returned to your starting point. What do you notice?

12. Lay your Möbius band back down. By folding it in three places, can you make it into a
triangle?

6The Möbius band was invented by August Ferdinand Möbius (German mathematician and astronomer;
1790 - 1868). Möbius, and those that attached his name to this object, were unaware that had been indepedently
invented, and actually described in print earlier, by Johann Benedict Listing (Czech mathematician; 1808 -
1882).

7For much more, see the chapter on the Möbius band in Discovering the Art of Mathematics - Art and Sculpture
in this series.
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13. The universal recycling symbol shown in Figure 2.2. Your folded Möbius band should re-
semble it. Is the symbol actually identical to your band? Explain preciely.

Figure 2.2: The universal recycling symbol.

2.1 Sets and Infinity

We don’t want to engage in a metaphysical discussion about the infinite - we want a rigorous
investigation. So what kinds of things are actually infinite? The infinite objects we will consider
here will generally be sets which are made up of infinitely many elements.

So what is a set? And what are elements?

Georg Cantor (German Mathematician; 1845 - 1918), the Father of the Infinite, said we
should think of a set intuitively as “a Many that allows itself to be thought of as a One.”8 For
example, the natural numbers 1, 2, 3, ... form the infinite set N = {1, 2, 3, ...}. We think of the
natural numbers as one object, but of course this one object is a collection of infinitely many
other objects. As you work with sets here we urge you to carefully distinguish between sets and
the objects that are collected together to form these sets. The objects that are collected together
to form the set are called its elements. You can think of the braces that contain them in the
standard notation as hands that are collecting the set’s elements together, holding them as a one.

To describe a set we will often list its elements. But we certainly cannot list all of the elements
of an infiniten set. So we will often list typical elements and then will then use the ellipsis “. . . ”
to denote the continued extension of these elements when the nature of their continuation should
be clear.

8Quoted in [?].
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2.2 A Set of Set Exercises

Like numbers, functions, and most other mathematical objects, there are many ways to perform
operations on sets. One can compare them (with inclusion denoted by ⊂ and ⊆), combine them
(with union denoted by ∪), and find common elements (with intersection denoted by ∩). Here we
will concern ourselves with the set difference, denoted by A − B, where we remove elements of
the set B from the set A. Specifically,

A−B = {All elements of A that are not elements of B}.

14. Determine the set {♦,♥,♣,♠} − {♣,♠}.

15. Determine the set {a, p, c, v, g, n} − {Four sided shapes}.

16. Write out ten elements in the set {a,b,c,...,x,y,z} that have been left out by the ellipsis.

17. A good name for the set {a,b,c,...,x,y,z} is EnglishAlphabet. Determine the set EnglishAlphabet−
{a,e,i,o,u}? What is a good name for the set we have removed? For the resulting set that is
left?

For finite sets the cardinality of the set is the number of elements in the set. For example,
the cardinality of the set EnglishAlphabet is 26.

18. Determine the cardinality of each of the sets in Investigation 14, Investigation 15, and
Investigation 17.

Each time we use set difference, it gives rise to statement from arithmetic. For example,

DaysoftheWeek−Weekend = {Monday, Tuesday, Wednesday, Thursday, Friday}

gives rise to the arithmetical statement:

7− 2 = 5.

19. Determine the arithmetical statement that corresponds to the set difference in Investiga-
tion 14.

20. Determine the arithmetical statement that corresponds to the set difference in Investiga-
tion 15.

21. Determine the arithmetical statement that corresponds to the set difference in Investiga-
tion 17.

2.3 Infinite Arithmetic

Now let us move to the infinite. In particular, we are interested whether there is an arithmetic of
the infinite that is consistent and makes sense.

22. Can you think of an appropriate value for ∞−∞ is? Explain.
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Figure 2.3: Two rolling wheels

23. For each of the sets {1, 2, 3, . . .} and {4, 5, 6, . . .} write out a dozen elements that have been
left out by the ellipses.

24. From the infinite set {1, 2, 3, . . .} remove the infinite set {4, 5, 6, . . .} . What is the remaining
set and how large is it?

25. What does Investigation 24 suggest as a value for ∞−∞?

26. Write out a dozen elements that have been left out of the set {5, 6, 7, . . .} by the ellipsis.

27. From the infinite set {1, 2, 3, . . .} remove the infinite set {5, 6, 7, . . .} . What is the remaining
set and how large is it?

28. What does Investigation 27 suggest as a value for ∞−∞?

29. Can the investigations above be extended to suggest other values for ∞−∞? Explain in
detail what values are suggested and/or what the limitations are.

30. Write out a dozen elements that have been left out of the set {2, 4, 6, . . .} by the ellipsis.

31. From the infinite set {1, 2, 3, . . .} remove the infinite set {2, 4, 6, ...}. What is the remaining
set and how large is it?

32. What does Investigation 31 suggest as a value for ∞−∞?

33. What do the preceeding investigations suggest about our ability to discover a straightforward
arithmetic for ∞?

2.4 The Wheel of Aristotle

Consider the two disks pictured in Figure 2.3 whose boundaries are the circles C1 and C2 and
whose radii are r1 = 1 unit and r2 = 3 units respectively. Throughout, think of these as actual
physical wheels which are rolling along the parallel lines L1 and L2 respectively. The points P and
Q travel along the circles as they roll.
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Figure 2.4: The Wheel of Aristotle

34. Draw a scale picture which represents the situation when i) the smaller wheel has been moved
to the right until P and A are concurrent9, and, ii) the larger wheel has been moved to the
right until Q and B are concurrent.

35. Beginning with the situation in Investigation 34, allow the smaller wheel to roll to the right
through one full rotation. Draw a scale picture of the resulting situation, labelling the point
where P first comes in contact again with L1 by C.

36. How long is the line segment AC? Explain.

37. Beginning with the situation in Investigation 34, allow the larger wheel to roll to the right
through one full rotation. Draw a scale picture of the resulting situation, labeling the point
where Q first comes in contact again with L2 by D.

38. How long is the line segment BD? Explain.

The Wheel of Aristotle is constructed by gluing two circular disks together with their centers
concurrent. We will use the same wheels as above. Our wheel then looks as in Figure 2.4. The
vertical line segment OQ is simply a reference line from the center of the circles to L2.

39. Draw a scale picture which represents the situation when the Wheel of Aristotle has been
moved to the right until P and A are concurrent, and, Q and B are concurrent.

We would like to analyze the situation as the Wheel of Aristotle “rolls” along the lines L1 and
L2.

40. Beginning with the situation in Investigation 39, allow the Wheel of Aristotle to roll hori-
zontally to the right until the first time that the line OQ is again vertical and is in contact
with L2. Draw a scale picture of the resulting situation, labeling the point where P comes
into contact with L1 by C and the point where Q again comes in contact with L2 by D.

41. When you rolled the Wheel of Aristotle in Investigation 40, how many rotations did the
larger wheel undergo? Explain.

9Two points are concurrent if they occupy the same point in space.
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42. When you rolled the Wheel of Aristotle in Investigation 40, how many rotations did the
smaller wheel undergo? Explain.

43. What is the length of the line segment AC?

44. What is the length of the line segment BD?

45. Compare your answers to Investigation 36 and Investigation 38 with Investigation 43 and
Investigation 44. Describe the disagreement you see. This difficulty is often referred to as
the Wheel Paradox of Aristotle .

46. Can you explain how and why the disagreement in Investigation 45 arises?

The apparent contradiction that arose in Investigation 45 can be explained physically. Con-
struct a Square Wheel of Aristotle from paper or cardboard that mimics the construction
above but uses squares instead of circles. We will keep the notation L1 and L2 from above.

47. Draw a time-lapse like picture which shows how the large square travels as the Square Wheel
of Aristotle undergoes one full rotation. When is the large square in contact with L2? How
does the size of this contact area related to the size of the square?

48. Similarly, draw a time-lapse like picture which shows how the small square travels as the
Square Wheel of Aristotle undergoes one full rotation. When is the small square in contact
with L1? How does the size of this contact area related to the size of the square?

49. Is the behavior of the Square Wheel of Aristotle more understandable than the (circular)
Wheel of Aristotle? Explain.

50. Could the construction and analysis carried out above be carried out if one employed wheels
constructed from hexagons, octagons, dodecagons, etc.? If so, what would the results be?
Describe them carefully.

51. What explanation for the apparent contradiction considered in Investigation 45 do these
examples suggest? Is this a legitimate answer that explains the apparent contradiction?
Explain.

There is another strange situation that the Wheel of Aristotle brings to light - one that will
become essential to our study of the infinite.

52. How many points make up the circle C1?

53. How many points make up the circle C2?

54. Which do you think contains more points circle C2 or circle C1? How many more?

Suppose the line segment OQ is free to rotate about the point O, like the hand of a clock.

55. As the line segment OQ rotates, how many points on C1 is it in contact with at any given
time? How many points on C2 is it in contact with at any given time?
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56. Can each point on C2 be “matched up” with a unique point on C1 by suitably rotating the
line segment OQ? Explain.

57. Can each point on C1 be “matched up” with a unique point on C2 by suitably rotating the
line segment OQ? Explain.

58. What do Investigations 55-57 tell you about the relative number of points on C2 as compared
to the number of points on C1?

59. How do your answers to Investigation 54 and Investigation 58 compare? Explain in detail.

2.5 Zeno’s Paradox of Motion

A paradox is a statement or result that seems to be logically well founded although it is contrary
to common sense or intuition. The Wheel of Aristotle involved two paradoxes, one of which you
worked to resolve in Investigation 51. The other, the comparison of the number of points on
the circles C1 and C2, is at the heart of the the surprises infinity gives rise to that we wish to
understand.

There are many famous paradoxes that arise in settings involving the infinite - problems that
have confounded philosophers, mathematicians, scientists, writers, and thinkers for thousands of
years. Two more are given here. The first is one of the famous paradoxes of the Zeno of Elea
(Greek Philosopher; circa 490 B.C. - circa 420 B.C.).

60. When you’re done working on this chapter you might like to leave the room you’re currently
working in. How far is the door from where you are sitting now?

61. Before you can reach the door to leave, you must cover half the distance to the door. How
far is this?

62. However, to get halfway to the doorway, you have to cover half of that distance first, right?
How far is this?

63. And before you cover the distance from Investigation 62, you must cover half of that distance
first, right? How far is this distance from where you are sitting?

64. Can the reasoning in Investigation 63 be continued? For how long?

65. Before you can leave the room, every single one of the stages described in Investigation 64
must first be completed - all infinitely many of them. What does this seem to suggest about
your ability to leave the room?

66. What do these investigations seem to tell you about any kind of motion at all?

67. Is this realistic?

This “forever trapped with my mathematics book” paradox is a version of one of Zeno’s para-
doxes referred to as the Zeno’s dichotomy . Another of Zeno’s paradoxes is known as Achilles
and the Tortoise . In this paradox the swift Achilles allows a tortoise a half lap lead in a one lap
race.
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68. As Achilles races to the halfway point, what will the tortoise be doing?

69. As Achilles races from the halfway point to the tortoise’s new location, what will the tortoise
be doing?

70. In analogy to Zeno’s dichotomy, show how the idea of Investigations Investigation 68 and
Investigation 69 can be repeated indefinitely, suggesting that Achilles will always be behind
the tortoise.

71. Does this seem realistic?

72. Investigation 66 and Investigation 70 show why these examples of Zeno’s are considered
paradoxes. Can you think of any way out of these paradoxes?

We will return to the Achilles and the Tortoise paradox soon.

2.6 Non-Convergence in Measure

Figure 2.5: The Unit Square

Here’s another paradox. Consider the square in Figure 2.5, each of whose sides are 1 unit long.
We would like to travel from corner A to corner B.

73. Clearly the most efficient way to get from A to B is a straight line, the diagonal AB which
has been drawn in as indicated. Find the length L of this diagonal.

74. Travel from A to B by moving vertically one unit and then horizontally one unit. Does this
seem to be an efficient way to travel? What is the length of this path?

75. Travel from A to B by alternatively moving vertically and then horizontally in one-half unit
increments. Does this seem like it will be a more efficient way to travel? Draw in this path
and find its length.
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76. Travel from A to B by alternatively moving vertically and then horizontally in one-quarter
unit increments. Does this seem like it will be a more efficient way to travel? Draw in this
path and find its length.

77. Travel from A to B by alternatively moving vertically and then horizontally in one-eighth
unit increments. Does this seem like it will be a more efficient way to travel? Draw in this
path and find its length.

78. What do you notice about the lengths of the paths in Investigation 74 - Investigation 77?
Will this pattern continue indefinitely?

79. As the length of the vertical and horizontal increments get smaller and smaller, how do the

paths compare to the diagonal path
−−→
AB? How do the lengths of these paths compare? Can

you explain this paradox?

Closing Essay
This chapter was an introduction to the infinite. But it was also a warning - when
working with the infinite things do not always work as we would expect. Some of
these examples should be disturbing. They should give you a sense of intellectual
disequilibrium.
In a brief essay, describe your thoughts and feelings about the infinite as this chapter
closes.

2.7 Connections

2.7.1 Poetry

The infinite appears in numerous poems. Two of our favorites are below. Note the distinction
between what one can quantify and one can’t in the first poem and the links to exponential growth
in the second.

I amass countless numbers,
I pile millions into a mountain,
I pour time in a heap,
Ranges of innumerable worlds.
When I look at you
From a reckless height,
Then I see that you are Far above all numbers and measures
They are just part of you.

Albert von Haller (German Doctor and Poet; 1708 - 1777)

So, naturalists observe, a flea
Has smaller fleas that on him prey;
And these have smaller still to bite ’em,
And so proceed ad infinitum.
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Jonathan Swift (; - ), author of Gulliver’s Travels. This stanza is from the long poem “On
Poetry: A Rhapsody” which uses the infinite explicitly in many other places as well.

80. Independent Investigation: Find two or three poems in which the infinite appears. What
are your thoughts on the use of the infinite in these poems?

2.7.2 Art and Design

The near universal use of the symbol ∞ to represent infinity is not without its detractors. As a
student working through this book, Brianna Lyons (American student and graphic designer; - )
was pointed in her critiques of this symbol: “If infinity starts at some point and continues forever
then in its journey, it should not cross over itself, like the lemniscate does in the middle.” Her
“defiance and need to be different” lead her to create an alternative symbol, shown in Figure 2.6.
She says that this new symbol “puts my mind at ease, accurately representing infinity thru two
seemingly endless spirals.”

Figure 2.6: Alternative infinity symbol by Brianna Lyons.

81. Independent Investigation: Consider the relative merits of the alternative symbol for the
infinity in Figure 2.6 in comparison to the typical symbol. Can you think of another alternative
symbol? What properties should it have? Are there limitations or properties an alternative
symbol must have to be widely used? Explain.

82. Independent Investigation: Where do you see the infinite represented in Figure 2.7? How
is it related to other artwork or symbols in this book or that you have seen elsewhere in relation
to the infinite. How do you think this image was created?

32



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 2.7: Towers by Brianna Lyons.

83. Independent Investigation: Where do you see the infinite represented in Figure 2.8? How
is it related to other artwork or symbols in this book or that you have seen elsewhere in relation
to the infinite. How do you think this image was created? Look at a high-resolution, color
version of tunnels. (Available online at ???) What is the impact of the colored dots? Why
does this happen? Do the names of these pieces of artwork seem appropriate? Explain.
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Figure 2.8: Tunnels by Brianna Lyons.
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Chapter 3

Grasping Infinity

Our minds are finite, and yet even in these circumstances of finitude we are surrounded by
possibilities that are infinite, and the purpose of life is to grasp as much as we can out of that
infinitude.

Alfred North Whitehead (English Mathematician and Philosopher; 1861 - 1947)

To many the infinite is a mysterious, troubling, metaphysical notion. The paradoxes in the
previous chapter may have reinforced these views, suggesting there is little hope of grasping the
infinite in any meaningful way. If you feel this way you are not alone - through history this view
has been widely held.

Yet for many the infinite has served as the ultimate puzzle, the supreme challenge. A select
group of nineteenth century mathematicians rose to this challenge and helped us put this puzzle
together.

After exploring some of this trailblazing work, we shall see that despite being finite beings
with finite experiences, we can both understand and use the infinite in meaningful, logical, and
mathematically rigorous ways.

There will be surprises, but this should be expected. After all, we are dealing with the infinite,
something beyond all of our finite experiences. If infinite objects behaved exactly as finite objects
there would be little to be interested in.

Focussing Question - 0.999 . . .
What can we say about the infinitely repeating decimal 0.999 . . .?

Think about the focussing question a bit. Talk with some peers about this question. Make
some conjectures. Write down some questions about 0.999 . . . that it may be important to answer.
See what progress you can make in understanding this infinite mathematical object.
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3.1 Algebra and Infinitely Repeated Decimals

With the the warning above in mind, let us proceed using “simple” algebra and arithmetic to
analyze the infinitely repeated decimal 0.121212 . . ..1 We’re not sure what this number is. Often
we denote an unknown quantity by a variable so we are free to work with it. So define this quantity
by the varible x, i.e.

x = 0.121212 . . .

Multiplying both sides of this equation by 100 yields

100x = 12.1212 . . .

This seems to have accomplished little more than creating another number, 10x, with the same
unpleasant infinite string of decimal digits. However, employed creatively, this scaling can help us.

Consider the following difference:

100x=12.121212 . . .
−x= 0.121212 . . .

Think about carrying out this subtraction. All of the decimal digits on the right, all infinitely
many of them, cancel out those on the left leaving only the number 12 as a result. But the left
hand side is a simple algebraic expression, leaving, upon subtraction, 99x. So the difference, once
simplified, becomes

99x = 12.

Solving for x we see that x = 12
99 , i.e. 0.121212 . . . = 12

99 . If you want, you can check this on your
calculator for some reassurance.

What have we done? We have converted an infinite object into a finite one, a simple fraction.

3.2 0.999 . . . and 1

1. Describe any thoughts, ideas, questions, and/or conjectures that you made about 0.999 . . .
when you thought about the Focussing Question at the outset of this chapter.

2. Define x = 0.999 . . . Scale this number by a factor of 10. That is, determine the value of 10x.

3. Can you adapt the method used above to with 0.121212 . . . to determine an alternative,
non-decimal identity for 0.999 . . .? Explain.

4. Is your result in Investigation 3 intuitively satisfying to you? Explain.

The result in Investigation 3 is often surprising to people. So let’s investigate the number
0.999 . . . in an alternative way.

5. What is the exact value of 1
3 as a decimal?

1The notation 0.12 is often used instead of 0.121212... We will employ the latter notion because the ellipsis . . . can
be used in many different settings involving the infinite.
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6. Check the previous result using long division to precisely write 1
3 as a (possibly infinite)

decimal. Express your result as an equation: 1
3 = .

7. Multiply both sides of your equation from Investigation 6 by 3. What non-decimal identity
does this suggest for the number 0.999 . . .?

8. Does this additional analysis help your intuition?

Warning about Calculators -
Here and below you should only use calculators to check finite calculations. As you
have just seen the number 0.333 . . . is an infinite process as a decimal, but a finite
one as a fraction. Calculators are generally decimal based. This illustration is part
of a more general principle - computers cannot deal with infinite processes, but the
human mind can.

3.3 More Infinite Decimals

9. Consider the the number represented by the infinitely repeated decimal x = 0.373737 . . ..
Scale this number by a factor of 10; i.e. compute 10x. Does this scaling help you to employ
the method used above with 0.121212 . . . to determine an alternative, non-decimal identity
for 0.373737 . . .? Explain.

10. Compute 100x. Does this scaling allow you to employ the method above to determine an
alternative, non-decimal identity for 0.373737 . . .? Explain.

11. Now consider the infinitely repeated decimal number x = 0.295295295 . . .. Compute 10x.
Does this scaling help you to employ the method used above to determine an alternative,
non-decimal identity for 0.295295295 . . .? Explain.

12. Compute 100x. Does this scaling allow you to employ the method above to determine an
alternative, non-decimal identity for 0.295295295 . . .? Explain.

13. Determine an alternative, non-decimal identity for 0.295295295 . . ..

14. Yet another infinitely repeated decimal number is 0.821982198219 . . .. Find an alternative,
non-decimal identity for this number.

15. Repeat Investigation 14 for the infinitely repeated decimal x = 0.123456123456123456 . . ..

16. Repeat Investigation 14 for the infinitely repeated decimal x = 0.123456789123456789123456789 . . ..

17. These examples should suggest a general method, or algorithm, for determining alternative,
non-decimal identities of any infinitely repeating decimal numbers. Explain.
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Figure 3.1: Bounding the infinite series 1 + 1
2 + 1

4 + 1
8 + . . .

3.4 Another Infinite Objects

The infinite decimal 0.121212 . . . is infinite only in the sense that it has infinitely many decimal
digits. As we have seen, it is really just a garden variety fraction, 12

99 . So 0.121212 . . . does not
represents an infinite quantity, rather an object whose description is infinite. Mathematics is full
of “infinite objects” that are not infinite in the sense that they are unlimited or without bound,
but only in the sense that they are comprised of infinitely many pieces or created as the result of
some infinite process.

Another example is the infinite series which is formed by adding infinitely many terms
together. A “simple” example of an infinite series is

1 +
1

2
+

1

4
+

1

8
+ ...

Here the ellipsis means that the terms in this series continue indefinitely, following the evident
pattern.

What does one do with a series? Series involve adding. It is natural to look for the sum.

What is the sum of an infinite series? One’s intuition might suggest that because this sum
grows as each successive term is added it would grow without bound. That is, the series would be
infinite not simply in the number of terms added, but that the sum of this series must be infinite
as well.

Such intuition is wrong. We shall see that Figure 3.1 shows in a straightforward, geometric
way that the sum of the infinite series 1 + 1

2 + 1
4 + 1

8 + . . . can be computed and it is finite.
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3.5 Infinite Objects - Numerically

Let’s return to 0.999 . . . for a moment and think about it numerically, considering the numbers as
numbers on the number line.

18. Which number is closer to 1, 0.9 or 0.999 . . .? Explain.

19. What is the distance between 1 and 0.9?

20. Which number is closer to 1, 0.99 or 0.999 . . .? Explain

21. What is the distance between 1 and 0.99?

22. Which number is closer to 1, 0.999 or 0.999 . . .? Explain

23. What is the distance between 1 and 0.999?

24. You should see a pattern forming. Describe this pattern precisely.

25. So how close to 1 is 0.999 . . .? Can you conclude anything from this? Explain.

What about infinite series?

26. What are the next ten terms following 1
8 in the series 1 + 1

2 + 1
4 + 1

8 + . . .?

27. Write the sum of the first two terms in the infinite series 1 + 1
2 + 1

4 + 1
8 + . . ., i.e. 1 + 1

2 , as a
single fraction.

28. Repeat Investigation 27 for the first three terms.

29. Repeat Investigation 27 for the first five terms.

30. Repeat Investigation 27 for the first nine terms.

31. Do you see a pattern in your answers?

32. Use this pattern to predict the sum of the first 15 terms.

33. Do these calculations suggest a exact value for the sum of this infinite series? Explain.

At this point some people protest, “All this shows is that the one object gets closer and closer
to another, getting infinitely close together. This doesn’t have to mean they are the same.” This is
a legitimate objection. But we remind you, as you saw in the Student Toolbox, while mathematics
may develop inductively, in respose to our experiences and intuition, its foundation starts with
definitions and then it is built logically on top of the definitions. To answer the objection, we
need to have an agreed upon definition of the numbers we are using: fractions, decimals, and even
infinitely repeating decimals. These numbers are part of the real numbers which comprise the
number line that you have drawn since elementary school.

Two millenia of investigations into the properties of the real numbers, with investigations like
those you have completed above, have shown mathematicians that the most useful definition of the
real numbers is as the unique complete, Archimidean, ordered field containing all of the fractions.
The adjective complete means little more than when two real numbers are “infinitely close” to
each other they must be the same real number.
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34. Does this historical context provide you some closure or fulfillment on issues such as the
identity of 0.999 . . .? Explain.

In every field it is important to make working definitions that enable discussion and investiga-
tion. What is ADD? How do we classify a certain genus of plants? What do we mean by reasonable
doubt in a court of law?

35. Find a total of a half dozen examples of definitions, terms, or concepts from a few different
fields that have changed over time. Describe them and their nature of change.

The pioneering work of several mathematicians, particularly Augustin Louis Cauchy (French
Mathematician; 1789 - 1857) and Karl Weierstrass (German Mathematician; 1815 - 1897),
during the mid- to late-nineteenth century in a period which has become known as the Age of
Analysis, was responsible for the definitions of the real numbers. While other numbers systems
may arise and find practical use, e.g. the surreal numbers you shall soon see, the real numbers will
retain a central place in mathematics and the theorems that have been proven about them will
remain unchanged.

As real numbers in this system 0.999 . . . = 1 and 1 + 1
2 + 1

4 + 1
8 + . . . = 2.

For information on where to learn more about some of these issues, see the conclusion of Section
Section 3.8 below.

3.6 Infinite Objects - Algebraically

Another way to try to determine the sum of an infinite series is to proceed algebraically as we
did above. Namely, we would like a way to scale our infinite series so we could compare it to the
original in a way leads only to finite objects that we can analyze in the standard way.

Consider again the sum

S = 1 +
1

2
+

1

4
+

1

8
+ . . .

The key insight to scaling this infinite object is that each term in this series is a factor of 1
2 as

large as the one that precedes it.

36. Scale S by a factor of 1
2 ; i.e. write 1

2S as an infinite series.

37. Compare S and 1
2s. Is it possible to adapt the method we used with decimals so all but

finitely many terms can be canceled? Explain.

38. Determine an exact value for S. How does it compare with your answer in Investigation 33?

Consider now the infinite series 1 + 1
3 + 1

9 + 1
27 + . . ..

39. What are the next ten terms in this series?

40. Use a calculator to determine the value of the sum of the first 10 terms in this infinite series.
Does this calculation suggest a value for the sum of this infinite series?

41. 1
3 plays a critical role in relationship between consecutive terms in this infinite series. What
role is this?
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Denote the sum of this new series by S = 1 + 1
3 + 1

9 + 1
27 + . . .

42. Scale S by 1
3 ; i.e. write 1

3S as an infinite series.

43. Compare S and 1
3S.

44. Determine a value for S. How does your answer compare with your answer in Investigation
Investigation 40?

3.7 Infinite Objects - Geometrically

3.7.1 Summing 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

+ . . .

Figure 3.1 shows a large rectangle, running from the left of the image to the right, which has been
decomposed into infinitely many squares and rectangles.

45. What are the dimensions and the area of this large rectangle?

46. Several of the rectangles and squares have their areas labelled. What are the dimensions and
areas of the two largest rectangles that have not be labelled?

47. What are the dimensions and areas of the two largest squares that have not been labelled?

48. On a copy of Figure 3.1 shade in an area equal to 1 + 1
2 .

49. On a copy of Figure 3.1 shade in an area equal to 1 + 1
2 + 1

4 . Show how this sum, computed
in Investigation 28, can be geometrically visualized; i.e. how can you see both numerator
and denominator using your figure?

50. On a copy of Figure 3.1 shade in an area equal to 1 + 1
2 + 1

4 + 1
8 + 1

16 . Show how this sum,
computed in Investigation 29, can be geometrically visualized; i.e. how do you see both
numerator and denominator using your figure?

51. If you were asked to shade an area equal to 1 + 1
2 + 1

4 + 1
8 + 1

16 + . . ., what would you shade?

52. Establish the sum of the infinite series 1 + 1
2 + 1

4 + 1
8 + 1

16 . . . geometrically.

Your explorations to determine the sum of the infinite series 1 + 1
2 + 1

4 + 1
8 + 1

16 . . .+ . . . make
up what is generally called a proof without words. There are many beautiful proofs without
words that help establish the sum of infinite series. The investigations below consider one that is
a bit harder, but is particularly nice because it works not just for one infinite series but infinitely
many.

3.7.2 Geometric Scaling

The left image in Figure 3.22 shows a regular octagon which has been decomposed into trapezoids
and a scaled octagon in the center. The area of the large octogon is 1 square unit and the length

2From “Proof without words: Geometric series formula” by James Tanton in ???, vol. 39, #2, March, 2008, p.
106.
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Figure 3.2: Finding the sum of the infinite series 1
9 + 1

92 + 1
93 + 1

94 + . . .

of the sides is represented by d. (It turns out that d = 1√
2(1+

√
2)

, but this is unimportant.) The

smaller octagon has been scaled down by a factor of 1
3 .

Scaling has been an important tool in our analysis of the infinite. It is here too. We need to
discover what happens to areas when the objects that have been measured are scaled up or down.3

53. Draw several planar geometric figures whose areas you can readily find. Label their dimen-
sions and find their areas.

54. Scale down each of the regions Investigation 53 by a factor of r = 1
3 . Draw the resulting

figures and label their new dimensions.

55. Find the area of each of the scaled regions in Investigation 54. How are the areas of the
scaled regions related to the areas of the original, unscaled regions?

56. Now scale up the regions in Investigation 53 by a factor of r = 2. Draw the resulting figures
and label their new dimensions.

57. Find the area of each of the scaled regions in Investigation 56. How are the areas of the
scaled regions related to the areas of the original, unscaled regions?

58. There is a general relationship between the areas of planar regions and the areas of these
regions once they have been scaled. Use your examples above to complete the statement of
this relationship:

3What we will find is a special case of a more general priciple that is a fundamental result from geometry.
The relationship between scaling and lengths, areas, or volumes gives rise to fractals. For more information see
Discovering the Art of Geometry in this series.
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Theorem 1. Let R be a region in the plane whose area is A. If R is scaled by a factor of

m then the area of the scaled region is ×A.

3.7.3 Summing 1
9

+ 1
92

+ 1
93

+ 1
94

+ . . .

59. What is the area of the octagon at the center of the figure on the left in Figure 3.2?

60. Determine the area of each of the quadrilaterals in the figure on the left in Figure 3.2.

The octagon on the right in Figure 3.2 is congruent to the octagon on the left. It has been
decomposed indefinitely, the lengths of the sides of the nested octagons being d, d3 ,

d
9 ,

d
27 , . . ..

61. Determine the area of the region which is labelled R2.

62. Determine the area of the region which is labelled R3.

63. Determine the area of the region which is labelled R4.

64. You should see a pattern in Investigations 61-63. Will this pattern continue indefinitely?
Explain how you know this.

65. On the right figure in Figure 3.2 a single triangle has been shaded. How does the area of
this triangle compare to the area of the entire octagon? Explain.

66. Explain how Investigations 59-64 allow you to determine the sum of the infinite series
1
9 + 1

92 + 1
93 + 1

94 + . . . as a single fraction.

3.7.4 0.999 . . . Again

67. Using the shapes in Figure 3.3 and your method in Investigations Investigations 59-66,
determine the sum of the infinite series 1

10 + 1
102 + 1

103 + 1
104 + . . . as a single fraction.

68. Convert each of the individual terms in the series 1
10 + 1

102 + 1
103 + 1

104 + . . . to decimals.

69. How hard is it to determine the sum of the infinite series 1
10 + 1

102 + 1
103 + 1

104 + . . . as a
decimal?

70. You now have determined the value of the sum of the infinite series 1
10 + 1

102 + 1
103 + 1

104 + . . .
as a fraction and as a decimal. Multiply both by 9. What does this tell you about the
identity of 0.999 . . .?

It is a curious thing that people on the whole do not boggle over an infinite decimal of
this kind (1.111111111 . . .), but when they look at an infinite addition like this:

1 + 1/10 + 1/100 + 1/1000 + 1/10000 + . . . adinfinitum,

although this is just another way of writing the other. But I am not surprised at their
looking aghast at the latter, though rather surprised that they accept the former.4

Rosza Peter (; - )

71. Are you “boggled” or “aghast” about 0.999 . . .? Describe which approach is most compelling
or what is still lacking in your ability to understand 0.999 . . ..

4From Playing with Infinity: Mathematical Explorations and Excursions, p. 104.
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Figure 3.3: Finding the sum of the infinite series 1
10 + 1

102 + 1
103 + 1

104 + . . .

3.7.5 The Sum of a Geometric Series

We conclude the Investigations by generalizing the results on infinite series above.

72. In Investigation 66 and Investigation 67 you determined the sums of the infinite series
1
9 + 1

92 + 1
93 + 1

94 + . . . and 1
10 + 1

102 + 1
103 + 1

104 + . . .. Do you think that this geometric
method can be used to determine the sum 1

5 + 1
52 + 1

53 + 1
54 + . . .? If so, what do you think

the sum will be?

73. What about 1
8 + 1

82 + 1
83 + 1

84 + . . .?

74. What about 1
37 + 1

372 + 1
373 + 1

374 + . . .?

75. We hope that you see a pattern. Complete the following:

Theorem 2. For any positive whole number the infinite series 1
k+ 1

k2 + 1
k3 + 1

k4 +. . . converges.

Moreover, its sum is given by 1
k + 1

k2 + 1
k3 + 1

k4 + . . . = .

76. Explain how you can “see” this result geometrically.

77. Below it will be useful if our infinite series began with the term 1+. Adapt the theorem just
stated to find a sum of these series - simplifying the sum as much as you can:

Theorem 3. For any positive whole number the infinite series 1
k+ 1

k2 + 1
k3 + 1

k4 +. . . converges.

Moreover, its sum is given by 1 + 1
k + 1

k2 + 1
k3 + 1

k4 + . . . = .

Let r denote some arbitrary number. The infinite series 1+r+r2+r3+. . . is called a geometric
series.
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78. Up to the missing 1+, which you know how to take care of as in Investigation 86, explain
why each of the infinite series you have considered above are geometric series by finding an
appopriate value of r for each.

79. How are consecutive terms in a geometric series related to one another?

80. What do you notice about all of the values of r in Investigation 78?

81. For certain values of r it should be clear that the sum of the associated geometric series is
infinite. For example, 1 + 1 + 12 + 13 = . . . = 1 + 1 + 1 + 1 + . . . = ∞. Find several other
values of r for which the geometric series clearly diverges to ∞?

82. In contrast, for what values of r does it seem possible that the sum of the geometric series
is finite? Explain.

83. Classroom Discussion: Compare results in Investigation 81 and Investigation 82. To-
gether can you form a conjecture that describes precisely what values of r will result in a
geometric series which diverges and what values of r will result in a geometric series that
converges to a finite sum?

As before, let us denote the sum of the geometric series by S; i.e.

S = 1 + r + r2 + r3 + . . .

84. Scale the geometric series by a factor of r; i.e. write r · S as an infinite series.

85. Compare S and r · S. Use the methods employed in the Investigations above to cancel all
but finitely many terms in these infinite series.

86. Solve the equation resulting from Investigation 85 for S in terms of r.

87. Check your sum in Investigation 38 by fixing an appopriate value of r and employing your
result in Investigation 86.

88. Check your sum in Investigation 44 by fixing an appopriate value of r and employing your
result in Investigation 86.

89. Check your sum in Investigation 66 by fixing an appopriate value of r and employing your
result in Investigation 86.

90. Check your sum in Investigation 67 by fixing an appopriate value of r and employing your
result in 86.

3.8 A Caveat on the Infinite

In parallel to the end of Section 3.5 one might object that we have treated our infinite objects as
though they behaved in the same way that finite objects do - perhaps a dangerous precedent.

This is a legitimate worry.
Instead of an infinite decimal or infinite series, what if we used our algebraic methods on a

whole number with infinitely many digits? How about something like x = . . . 999.? Notice the
decimal point after the digit 9 in the ones place.
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91. How big is the number . . . 999.? Explain.

92. Denote x = . . . 999. Scale x by a factor of 10; i.e. find 10x.

93. Which is bigger, x or 10x? Does this make sense intuitively?

94. Compare 10x and x. Then adapt the methods used above to determine a finite value for x.
(Hint: There are two ways to perform the subtraction. Let Investigation 93 suggest which
is most appropriate.)

95. Does your result in the previous Investigation make much intuitive sense? Explain.

96. Using the normal rules of arithmetic, describe how the following calculations have been
completed:

. . . 999.+ 1 = . . . 000. 2× . . . 999. = . . . 998. = . . . 999.− 1.

97. Expressed using our variable x the calculations in the previous problem can be written
algebraically as follows:

x+ 1 = 0 2x = x− 1.

Solve these equations for x. How do your answers compare to those in Investigation 94?

The examples in this section were discovered by Anna Mills (American Student; 1975 - ) when
she was a seventh grade student! She discovered these things after her teacher showed her how to
consider 0.999 . . . algebraically much as we did above. The mounting evidence that . . . 999. = −1 in
some strange way led Anna, her father, and later Paul Fjelstad (American Mathematician; 1929
- ) to a deeper analysis. It turns out that this bizarre result makes perfect sense when considered
in the worlds of modular arithmetic and p-adic numbers. This discovery resulted in the publication
of “The repeating integer paradox” in The College Mathematics Journal , vol. 26, no. 1, January
1995, pp. 11-15. Pretty heedy stuff for a seventh grader, huh?

So what does this say about our worry about treating infinite objects in such a cavalier way?
Well, it is warranted. But all of the Investigations here can be completed suitably without concern
because all of the infinite objects converge absolutely. Like completeness mentioned in Section
Section 3.5, this is a deep property that was central to the historical developments in the Age of
Analysis.

A more technical foray into the properties, construction and history of the real numbers is
generally a fundamental part of courses with names such as “Introduction to Real Analysis” which
are offered to junior and senior level mathematics majors. Those interested in pursuing this topic
at a less advanced level are invited to consider related topics in Discovering the Art of the Calculus
in this series.
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Chapter 4

Rigor and Divergence

The fear of infinity is a form of myopia that destroys the possibility of seeing the actual infinite,
even though it in its highest form has created and sustains us, and in its secondary transfinite
forms occurs all around us and even inhabits our minds.

Georg Cantor (German Mathematician; - )

Since human beings have never encountered actually infinite collections of things in our ma-
terial existence, all of our attempts to deal with them must involve projecting our finite
experience... Therefore, we must rely on logical reasoning... and then be prepared to accept
the consequences of our reasoning, regardless of whether or not they conform to our intuitive
feelings.

William P. Berlinghoff (; - )

Kerry E. Grant (; - )

In the later part of the Chapter 3 you developed a formula for the sum of a geometric series.
Namely, the sum is given by

1 + r + r2 + r3 + ... =
1

1− r
. (4.1)

Let’s reflect on this for a moment. In Investigations 87-90 in the previous chapter you used this
formula to easily determine the sum of four series that previously we had worked fairly hard to
compute. Indeed, the sum of every geometric series with −1 < r < 1 can be computed easily this
way. This is a powerful result.

1. Classroom Discussion: It is somewhat typical in mathematics classes for students to be
“given” a formula to “apply” to “exercises.” Having worked to determine how to deal with
a number of different infinite processes and, as part of this, how to determine the sum of an
infinite geometric series, you have rediscovered important mathematical results. How does
your rediscovery compare with previous experiences you have had in mathematics classes?
Was it better to rediscover or would you rather have had us just “give” you this formula to
“use?” Explain.

Below you will see how we can use our results on geometric series to help us analyze Zeno’s
Achilles paradox.
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Such success with the infinite is encouraging. Mathematicians of the seventeenth and eighteenth
century were buoyed with similar success. The newly discovered calculus, which relied heavily on
the notion of the infinitesimal , or infinitely small, and infinite series allowed mathematicians
(who were usually scientists as well) to make remarkable progress in the description of the physical
universe.

However, as indicated at the end of the previous chapter, there is an important need for rigor.
Significant problems associated with the cavalier treatment of the infinite began to be noticed at
the outset of the nineteenth century. David Bressoud (American Mathematician; - ) ascribes
the precipitating event to manuscript “Theory of the propogation of heat in solid bodies” by
Jean Baptiste Joseph Fourier (French Physicist and Mathematician; 1768 - 1830). Bressoud
describes the crisis as follows:

The crisis struck four days before Christmas 1807. The edifice of calculus was shaken
to its foundations The nineteenth century would see ever expanding investigations into
the assumptions of the calculus, an inspection and refitting of the structure from the
footings to the pinnacle, so thorough a reconstruction that the calculus would be given
a new name: analysis. Few of those who witnessed the incident of 1807 would have
recognized mathematics as it stood 100 years later.1

Below you will investigate some of the resulting rigor that was introduced in this revolution.
There are a number of troubling paradoxes that remain. But these are now results of the limits of
our intuition regarding the infinite, not limits of our understanding of the mathematics surrounding
the infinite.

4.1 Zeno Redux

As in the Chapter 2 we will assume Zeno’s hypothetical is 100 meters and that Achilles allows
the Tortoise a 50 meter lead. When the race started, Achilles needed to reach the 50m point
where Tortoise started. When he reached that point, Tortoise had moved further ahead. We can
think of this as the first stage of the race. In the second stage Achilles needed to reach Tortoise’s
new location. When he reached that point Tortoise again had moved further ahead. These stages
continue indefinitely, suggesting that Achilles can never catch Tortoise. This is the paradox.

This is a qualitative analysis. We would like to use what we have learned about series to
provide a quantitative analysis. Because this paradox involves both distance and time, speed must
be involved. So let us assume that Achilles runs the race at a constant speed of 10 m/sec and
Tortoise crawls at a constant speed of 4 m/sec.

2. How long does it take for Achilles to reach the point where Tortoise started the race?

3. Since the beginning gun which started the race, how much time has elapsed?

4. When Achilles reaches the starting point of Tortoise, how much further ahead has Tortoise
moved?

5. At this point, how far is Tortoise from the start?

1From A Radical Approach to Real Analysis, p. 1.
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6. How long does it take for Achilles to go from Tortoise’s starting location to Tortoise’s location
at the end of Stage 1 that you found in Investigation 5?

7. Since the beginning gun which started the race, how much time has elapsed?

8. When Achilles reaches the Tortoise’s location at the end of Stage 1, how much further ahead
has Tortoise moved?

9. At this point, how far is Tortoise from the start?

We need to continue to identify the times and locations involved in the motions of our two
racers. One way to do this is with a table.

Stage Time Total Distance Covered Tortoise Distance Covered Achilles
Interval Elapsed Time by Tortoise Location by Achilles Location

0 0 0 0 50 0 0
1 50 50
2

10. Use your data from Investigations 2-9 to fill in the rows for the first and second stages.

11. Now determine data which enables you to complete the table for stages 3 - 10. Describe any
patterns that you see.

You should notice that both the total elapsed time and the locations of our two runners seem
to be converging to fixed limits as the stage number n → ∞. We would like to determine what
these limits are.

12. Using your data, roughly estimate the limits as n→∞ of the total elapsed time, Tortoise’s
Location, and Achilles’ Location.

13. Write the limit of the Total Elapsed Time as the sum of an infinite series.

14. Use what you have learned about infinite series to determine the sum of this infinite series.
Does this limit agree with your estimate above?

15. Write the limit of Tortoise’s location as the sum of an infinite series.

16. Use what you have learned about infinite series to determine the sum of this infinite series.
Does this limit agree with your estimate above?

17. Check that your previous answer makes sense by using the time in Investigation 13 and the
constant rate of speed Tortoise travels.
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18. Write the limit of the Achilles’s location as ths sum of an infinite series.

19. Use what you have learned about infinite series to determine the sum of this infinite series.
Does this limit agree with your estimate above?

20. Check that your previous answer makes sense by using the time in Investigation 13 and the
constant rate of speed Achilles travels.

21. Based on these investigations, what happens at the time in Investigation 13?

22. What happens after the time in Investigation 13?

Another useful way to envision Zeno’s Achilles paradox is to consider it graphically.

Figure 4.1: Zeno’s race between Achilles and Tortoise.

23. An enlarged image of Figure 4.1 is included in the Appendix. On it, plot the location of
Achilles and Tortoise at the end of stages 1 - 6. Keep each racer in their own lane. As
has been done for time t = 0, draw a line from Achilles’ location extending well through
Tortoise’s location.

24. What do you notice about all of the lines that you have drawn?

25. Your completed figure should now remind you of a perspective drawing. It may also remind
you of Investigation 58 from the chapter which includes our analysis of the Wheel of Aristotle.
Does this figure shed any additional light on Zeno’s Achilles paradox? Explain.

In 1901 Bertrand Russell (English mathematician, logician, and philosopher; - ) remarked:
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Zeno was concerned with three problems...These are the problem of the infinitesimal,
the infinite, and continuity...From his to our own day, the finest intellects of each
generation in turn attacked these problems, but achieved broadly speaking, noth-
ing...Weierstrass, Dedekind, and Cantor,...have completely solved them. Their solu-
tions...are so clear as to leave no longer the slightest doubt or difficulty. This achieve-
ment is probably the greatest of which the age can boast...The problem of the infinites-
imal was solved by Weierstrass, the solution of the other two was begun by Dedekind
and definitely accomplished by Cantor.

Nonetheless, dissenters remain. In a September, 1994 Scientific American feature “Resolving
Zeno’s Paradoxes”, William I. McLauglin (; - ) stated:

At last, using a formulation of calculus that was developed in just the past decade or
so, it is possible to resolve Zeno’s paradoxes. The resolution depends on the concept of
infinitesimals, known since ancient times but until recently viewed by many thinkers
with skepticism.

At last? What does this mean?

26. Independent Investigation: Interview a mathematicians and report on her/his view of
the status of legitimate mathematical solutions to Zeno’s paradoxes.

An issue that further complicates Zeno’s paradoxes is the distinction between idealized, math-
ematical models of time and space on the one hand and the real time and space we inhabit on
the other. Idealized time and space are continuous and infinitely divisible. However, in prevailing
physical theories matter is neither continuous not infinitely divisible. That suggests to some that
real space and time are not either.

27. Independent Investigation: Interview a mathematician, philosopher, and/or physical sci-
entist and report on her/his views on the status of legitimate, real world solutions to Zeno’s
paradoxes.

4.2 Divergent Series

As authors we have been very careful to include only infinite series that are well-behaved. What
this means must now be determined, but, up to this point, all of the infinite series, except those
in final section about Anna Mills’ . . . 999.0, we have considered are absolutely convergent.

We now work to clarify what it means for infinite series to be well-behaved. This is an abso-
lutely critical matter, as realized by the famous, but tragically short-lived,2 Neils Henrik Abel
(Norwegian Mathematician; 1802 - 1829):

2Abel made brilliant and insightful contributions to modern mathematics, but, sadly, died of tuberculosis at the
age of 27. He is a revered figure in Norway and the Abel Prize is one of the more significant awards in the field of
mathematics.
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If you disregard the simplest cases, there is in all of mathematics not a single infinite
series whose sum has been rigorously determined. In other words, the most important
parts of mathematics stand without a foundation.

28. Consider the sequence (−1), (−1)2, (−1)3, (−1)4, . . . Simplify the terms in this sequence so
the sequence can be written without using exponents.

29. Let r = −1. With the help of the ideas in the previous investigation, express the geometric
series 1 + r + r2 + r3 + . . . without the use of exponents.

The infinite series in Investigation 29 is called the Grandi series after Guido Grandi (Italian
Mathematician and Jesuit Philosopher; 1671 - 1742).

30. What do you think the sum of the Grandi series is? Explain.

31. Using parentheses, group the first two terms in the series together, the next two terms
together, the next two terms after that together, etc. What value does this suggest the sum
of the Grandi series will be?

32. Suppose now that you left the first term by itself and instead used parentheses to group the
second and third terms together, the fourth and fifth terms together, etc. What value does
this suggest the sum of the Grandi series will be?

33. Are your results in Investigations Investigation 31 and Investigation 32 compatible? Explain.

34. The situation in Investigation 33 was described by Grandi as “comparable to the mysteries
of Christianity... paralleling the creation of the world out of nothing.” What do you think
of Grandi’s description?

35. Because the Grandi series arose from a geometric series it seems reasonable to use our formula
above to ascertain a value for the sum of the series. What value does the formula predict?

36. Classroom Discussion: What do these results suggest about the numbers 0, 12 , and 1? Is
any of this reasonable? What do you think is an appropriate value for the sum of the Grandi
series?

Even the most gifted mathematicians were troubled by paradoxes like the Grandi series.
Leonard Euler (Swiss Mathematician; 1707 - 1783), one of the greatest mathematicians of all
times, held firmly to the conviction that 1/2 was the proper sum of the Grandi series.

The contemporary practice is to name infinite series for which an appropriate sum cannot be
found as a divergent series.

A very important infinite series whose sum can be rigorously determined is called the harmonic
series. It is the following infinite series:

1 +
1

2
+

1

3
+

1

4
+ ...

37. Write out the first fifteen terms in the harmonic series.

38. Sum the first three terms in the harmonic series.
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39. Sum the first seven terms in the harmonic series.

40. Sum the first fifteen terms in the harmonic series.

41. How fast does the sum appear to be growing as you add more terms.

42. Is it clear whether the series will sum to a specific value? If so, what is this value?

Consider now the infinite series

1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+ . . . (4.2)

43. How many terms of 1
2 are there?

44. What is the sum of these “1
2 terms”?

45. How many terms of 1
4 are there?

46. What is the sum of these “1
4 terms”?

47. How many terms of 1
8 are there?

48. What is the sum of these “1
8 terms”?

49. Do the preceding problems suggest how many terms of 1
16 there will be in this series. How

many?

50. What is the sum of these “ 1
16 terms”?

51. If we sum this series through the end of the “1
4 terms”, what will the sum be?

52. If we sum this series through the end of the “1
8 terms”, what will the sum be?

53. If we sum this series through the end of the “ 1
16 terms”, what will the sum be?

54. If we sum this series through the end of the “ 1
32 terms”, what will the sum be?

55. The sum of this series is greater than 10. Through what terms would we have to add to
reach a sum greater than 10?

56. The sum of this series is greater than 100. Through what terms would we have to add to
reach a sum greater than 10?

57. The sum of this series is greater than 1,000,000. Through what terms would we have to add
to reach a sum greater than 10?

58. Compare the first term of the harmonic series with the first term of this new series. Then
compare the second terms of these series. And the third. And the fourth. Whenever they
are not equal, which series has the larger terms?

59. Classroom Discussion: Explain how to use the Investigations above to determine precise
sums for both the series in (4.2) and the harmonic series.

53



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

In addition to its use for series like the Grandi series, mathematicians also call series whose
sums approach ±∞ divergent series.

The proof of the divergence of the harmonic series you just completed is due to Nicole Oresme
(French Philosopher, Theologian, Mathematician, and Astronomer; c. 1323 - 1382).

4.3 Devilish Series

The divergent series are the invention of the devil, and it is a shame to base on them any
demonstration whatsoever. By using them, one may draw any conclusion he pleases and that
is why these series have produced so many fallacies and so many paradoxes.

Neils Henrik Abel (Norwegian Mathematician; 1802 - 1829)

There is no reason that infinite series must have all positive terms. For example, the alter-
nating harmonic series is built from the harmonic series but with every other term negative:

1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

Shown in Figure 4.2 are the results of adding a small number of terms of this series. For each
of the following, sum the indicated number of terms and then graph the partial sums on the graph
provided in the appendix:

60. . . . the first four terms.

61. . . . the first five terms.

62. . . . the first six terms.

63. . . . the first seven terms.

64. . . . the first eight terms.

65. . . . the first nine terms.

66. . . . the first ten terms.

67. . . . the first eleven terms.

68. . . . the first twelve terms.

Some of you might have access to technology (e.g. graphing calculators, programming lan-
guages, or spreadsheets) that will enable you to easily add dozens, hundreds, thousands, or even
millions of terms. Here are a few examples, each correct to 20 decimal places:

Partial Series Partial Sum
1− 1

2 + 1
3 − . . .−

1
100 0.68817217931019520324

1− 1
2 + 1

3 − . . .−
1

500 0.69214818055794532542
1− 1

2 + 1
3 − . . .−

1
1000 0.69264743055982030967

1− 1
2 + 1

3 − . . .−
1

5000 0.69304719055994510942
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Figure 4.2: Partial sums of the alternating harmonic series.

69. Classroom Discussion: Do the patterns in your partial sums allow you to determine
whether a partial sum over- or under-estimates the actual sum? Can you determine a bound
on how much your partial sums over- and under-estimate the actual sum? How can these
observations be combined with your data to find the sum of the alternating harmonic series
correct to many decimal places? Do so.

The natural logarithm is one of the more important functions in mathematics. Its values can
be approximated on most calculators - you use the ln function button. The value of ln(2), correct
to 9 decimal places, is 0.6931471806. That this is the sum of the alternating harmonic series was
discovered in ?? by ??.

70. Is 2 + 3 = 3 + 2? Why?

71. Is 219 + 3, 427 + 5, 392 = 5, 392 + 219 + 3, 427? Why?

72. Is 12 + 3, 492 + 12, 987 + 438 + 29, 351 + 423 = 438 + 12 + 423 + 12, 987 + 29, 351 + 3, 492?
Why?

73. Does the sum of finitely many terms remain the same when the order of the terms are
rearranged?

74. Do you think the sum of infinitely many terms remains the same when the order of the terms
are rearranged?

When we rearrange the order in which we add terms in a series, finite or infinite, we call this
a rearrangement - no surprise there. Let us investigate what happens when we rearrange the
alternating harmonic series.
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75. What would the terms in the next three sets of parenthesis in the series

1− 1

2
+

(
1

3
− 1

4
− 1

6

)
+

(
1

5
− 1

8
− 1

10

)
+ . . .

be?

76. Explain why the infinite series in Investigation 75 is a rearrangement of the alternating
harmonic series.

77. Simplify and reduce the terms in each of the five sets of parenthesis in Investigation 75,
leaving your results as fractions.

78. Show that each of the results in Investigation 77 is given by −1
4n(2n+1) for appropriate values

of n. (Note: With a little algebra, this result can be proved to continue indefinitely.)

79. What can you conclude about the sum of the infinite series in Investigation 75? Does this
result agree with the sum of the series prior to its rearrangment?

Consider now the infinite series

1 +

(
−1

2
+

1

3
+

1

5

)
+

(
−1

4
+

1

7
+

1

9

)
+ . . .

80. What would the terms in the next three sets of parenthesis in this series be?

81. Explain why this infinite series is a rearrangement of the alternating harmonic series.

82. Simplify and reduce the terms in each of the five sets of parenthesis, leaving your results as
fractions.

83. Show that each of the results is given by −1
2n(4n−1)(4n+1) .

84. What can you conclude about the sum of this infinite series? Does this result agree with the
sum of the series prior to its rearrangment?

We have now shown that the alternating harmonic series has three different sums when it is
rearranged! These are not fictitous sums like those of the Grandi series. These are real sums
whose exact values can be rigorously determined. And this shock is just the beginning. For the
alternating harmonic series can be rearranged to have any sum! This is the striking result of
Georg Friedrich Bernhard Riemann (German mathematician; 1826 - 1866):

Theorem 4. (Riemann’s Rearrangement Theorem) Suppose that an infinite series of both positive
and negative terms converges while the series formed by making all of the original series’ terms
positive diverges. (Such a series is called conditionally convergent.) Let T be any real number,
+∞ or −∞. Then there is a rearrangement of the series that converges to T .

This is a remarkable theorem which highlights the limits of our finite intuitions in dealing with
the infinite. Unlike some of the earlier surprises and paradoxes, we are not seeing the faults in
our reasoning. We’ve illustrated this result with rigor, the theorem itself is established deductively
in a fairly straightforward way (see Further Investigations), and we must accept this result as a
wonderful glimpse into the world of the infinite.
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4.4 Gabriel’s Wedding Cake

In this section we see another glimpse into this magical world of the infinite. It too will require a
shift in our intuition.

To analyze this example we must first visit another famous infinite series:

1

1
+

1

4
+

1

9
+

1

16
+ . . .

85. Write out the next ten terms in this infinite series.

86. What is the sum of the first five terms in this series?

87. What is the sum the first ten terms in this series?

88. Show that your answers to the previous problems are close to π2

6 .

Showing, in 1734, that the sum of the infinite series 1
1 + 1

4 + 1
9 + 1

16 + . . . is precisely equal

to π2

6 was one of the great early triumphs of Leonard Euler (; - ), one of the three greatest
mathematicians of all time. It is also interesting to note that over 200 years later the sums of
many closely related infinite series remain unknown. In fact, we do not know the sums of any of
the p-series with odd exponents greater than one:

1

13
+

1

23
+

1

33
+

1

43
+ . . .

1

15
+

1

25
+

1

35
+

1

45
+ . . .

1

17
+

1

27
+

1

37
+

1

47
+ . . .

...

Indeed, these sums are values of the Riemann Zeta Function which is the centerpiece of the
Riemann Hypothesis. This unsolved problem is so important there is a $1,000,000 (US) prize for
its solution as part of the Clay Mathematics Institute Millenium Prize Problems and it is
the focus of many new books for general audiences. Links to this problem are considered in both
of the volumes Discovering the Art of Mathematics: Number Theory and Discovering the Art of
Mathematics: Patterns in this series.

The object in Figure 4.3 is called Gabriel’s Horn . It was invented by Evangelista Toricelli
(Italian Mathematician and Physicist; - ) in 1641 and had important links to the forthcoming
invention of the calculus and sparked significant philosophical debates.3 The object in Figure 4.4
shares similarly surprising properties as Gabriel’s Horn. It was invented by Julian F. Fleron
(American Mathematician and Teacher; 1966 - ) in 1998 and is called Gabriel’s Wedding Cake.

Gabriel’s Wedding Cake is constructed by piling an infinite number of cylindrical cake layers
on top of one another. The height of each of these layers is one while the radii of these layers are
1, 12 ,

1
3 , . . ., respectively.

3See “Gabriel’s Wedding Cake” by Julian F. Fleron, The College Mathematics Journal , Vol. 30, No. 1, January
1999, pp. 35 - 38 for more details and references.
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Figure 4.3: Gabriel’s Horn.

89. Classroom Discussion: Can the volume and surface area of Gabriel’s Horn and Wedding
Cake be measured? Do you have predictions about the size of these measures?

90. Describe the formulae for the volume and suface area of a cylinder.

Find an expression, leaving π as a symbolic value without converting it to a decimal value, for
the volume of . . .

91. . . . the first layer of the cake.

92. . . . the second layer of the cake.

93. . . . the third layer of the cake.

94. Describe the pattern you see in the measures of the volumes in the previous investigations.
Use it to determine expressions for the volumes of the next four layers of the cake.

95. Determine an infinite series that measures the volume of the entire cake.

96. Using a series that we have previously considered, find the exact volume of the cake.

97. Find the total exposed area of the tops of the cakes. (Hint: it’s easy if you think about all
of them together, otherwise it is hard.)

Find an expression, leaving π as a symbolic value without converting it to a decimal value, for
the surface area of the side of...

98. . . . the first layer of the cake.

99. . . . the second layer of the cake.

100. . . . the third layer of the cake.

101. Describe the pattern you see in the measures of the surface areas in the previous investiga-
tions. Use it to determine expressions for the surface areas of the next four layers of the
cake.
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Figure 4.4: Gabriel’s Wedding Cake.

102. Use the previous investigation to determine an infinite series that represents the volume of
the entire cake.

103. Using a series that we have previously considered, find the exact surface area of the cake.

104. Classroom Discussion: These investigations prove that the Gabriel’s Wedding Cake has a
volume of just over 5 cubic units while it has an infinite surface area. Does this seem feasible?
If we had a single cake pan to make this cake we could make the batter to fill it, but could
we grease the surface of the pan (so the cake didn’t stick)? This seems problematic, doesn’t
it? Are there ways out of this dilemma? What does this do to our understanding of the
infinite?

4.5 Connections

4.5.1 Diversity

By now you probably noticed that the overwhelming majority of our historical links have been
to Eurocentric mathematicians. This parallels history in many areas. How much this has to
do with the existing historical record versus issues of power, class, and race can be debated. In
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our particular context, progress is being made in uncovering powerful work of non-Eurocentric
mathematicians. For example, many of the important results on representations of functions by
power series seem to have been developed by Indian mathematicians of the Kerala region centuries
before their European counterparts. In fact, some suggest that these results may have been
carried back to Europe by Jesuit missionaries. To learn more one can begin with chapter “Indian
Mathematics: The Classical Period and After” in The Crest of the Peacock: Non-European Roots
of Mathematics by George Cheverghese Joseph and then look online for more recent discoveries.

4.5.2 Philosophy and Religion

In the introduction to Gabriel’s Horn and Gabriel’s Wedding Cake we used the word “invented”.
Do you think this is an appropriate word or do you think “discovered” would have been better?
Those who believe “discovered” is a better word are generally called Platonists. Those who believe
the more appropriate word is “invented” cannot be classified as easily, they may be empiricists,
constructivists, formalists, etc. Indeed, the connections between mathematics and philosophy are
deep and long-standing. Those with interest in pursuing more are encouraged to consult the
chapter “From Certainty to Fallibility” in The Mathematical Experience by Philip J. Davis and
Reuben Hersh which won the 1983 National Book Award in the Science category.

In the new book Naming Infinity Loren Graham and Jean-Michel Kantor describe how

Name Worshipping - a religious viewpoint regarded as heresy by the Russian Orthodox
Church and condemned by the Communist Party as a reactionary cult - influenced the
emergence of a new movement in modern mathematics.

This movement was the continuation of the work of Georg Cantor on the infinite. The authors argue
that “while the French were constrained by their rationalism, the Russians were energized by their
mystical faith.” The “Russian trio” of Nikolai Nikolaevich Luzin (Russian Mathematician;
1883 - 1950), Dimitri Egorov (Russian Mathematician; 1869 - 1931), and Pavel Florensky
(Russian Mathematician; 1882 - 1937) had a deep impact on the development of a powerful Russian
mathematical community in the twentieth century. They were clearly on the side of “invention”
with Luzin speaking strongly about the importance of naming:

Each definition is a piece of secret ripped from Nature by the human spirit. I insist
on this: any complicated thing, being illumined by definitions, being laid out in them,
being broken up into pieces, will be separated into pieces completely transparent even
to a child, excluding foggy and dark parts that our intuition whispers to us while acting,
separating into logical pieces, then only can we mover further, towards new successes
due to definitions.

4.6 Further Investigations

4.6.1 Rearranging Paradox

Another way to see that rearranging infinite series effects the sum is to analzyze the alternating
harmonic series as we did the the infinitely repeating decimal 0.999 . . . previously. Namely, define
S by:
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S = 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

F1. Multiply both sides of the equation for S by 2 to find an infinite series for 2S.

F2. Combine terms which share the same denominators and show that the result is 2S = S.

F3. We know S 6= 0, so divide by S to “show” 2 = 1.

F4. Where is it that we have gone astray, or have we really proven that 2 = 1?

4.6.2 Riemann’s Rearrangement Theorem

Peter Lejeune Dirichlet (; - ) is the earliest person we have on record of being aware that
rearranging an infinite series may change its sum. He discovered this in 1827. It was not until
1852 that the question was investigated more fully, this time by Riemann who had sought the
advice of his elder Dirichlet. The rearrangement theorem that now bears his name was proven
by 1853 but was published posthumously in 1866, and only then because its importance was
recognized by Richard Dedekind (German mathematician; 1831 - 1916).4

Riemann’s Rearrangment Theorem is counterintuitive, showing that infinite series do not sat-
isfy the commutative law of addition that we are used to. But in some sense it is maximally
counterintuitive, showing that a conditionally convergent series can be rearranged to converge to
any value one desires! With such surprises, one might expect that proving this result would be
very difficult. However, nothing could be further from the case. Rather, the direct and simple
proof adds greatly to the beauty of this result.

Here we illustrate intuitively how the proof proceeds. A formal proof relies on little more than
rigorous use of the key definitions of the ideas investigated here and below. Our approach follows
that of Dunham in The Calculus Gallery who follows Riemann’s original proof.

F5. Suppose the infinite series
∑∞
n=1 an is convergent. Explain why the individual terms an

must converge to 0 in the limit as n→∞.

F6. Explain how we can rearrange the infinite series
∑∞
n=1 an, which may include both positive

and negative terms, into the difference of two infinite series with all positive terms. I.e.∑∞
n=1 an = (c1 + c2 + c3 + . . .)− (d1 + d2 + d3 + . . .) where 0 ≤ cn, dn. (Note: We chose the

labels c and d to symbolize the “credits” and “debits” of the original series.)

F7. Suppose the infinite series
∑∞
n=1 an is conditionally convergent. Explain why the associated

infinite series of credits and debits (i.e. the series c1 + c2 + c3 + . . . and d1 + d2 + d3 + . . .
from Further Investigation F6) both must diverge.

F8. Pick any target value, which we denote by T , you would like the rearranged series to
converge to.

F9. Beginning with c1 begin adding successive credits. Explain why the sum must eventually
surpass T .

4See “Riemann’s Rearrangement Theorem” by Stewart Galanor, Mathematics Teacher , vol. 80, no. 8, Nov.
1987, pp. 675-81 and A Radical Approach to Real Analysis by David Bressoud.
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F10. If you stop adding successive credits as soon as the sum surpasses T , how far from T can
the sum be?

F11. To the credits in Further Investigation F10 begin subtracting successive debits starting at
d1. Explain why the sum must eventually fall below T .

F12. If you stop subtracting successive debits as soon as the sum falls below T , how far from T
can the sum be?

F13. Explain how you can continue this process to rearrange the series so it has the form

(c1 + c2 + . . . cn1)−(d1 + d2 + . . . dm1)+(cn1+1 + cn1+2 + . . . cn2)−(dm1+1 + dm1+2 + . . . dm2)+. . .

with partial sums mimicking those in Investigation 10 and Investigation 12.

F14. Explain why the rearrangement just created must have sum T .

Most infinite series are remarkably hard to analyze, as the quote above from Abel seems to
suggest. Whether their sum is finite or not can often be ascertained, but rarely can the exact
value of the sum be found. Nonetheless, many important and remarkable infinite series have been
discovered, several of them in the search for methods of approximating the ubiquitous constant .

The following infinite series is known as the Gregory series:

1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

F15. Write out the next ten terms in this series.

F16. Sum the first five terms in this series.

F17. Sum the first ten terms in this series.

F18. Show that your answers to the previous problems are close to /4.

Although it is hard to demonstrate, the Gregory series does has π
4 as a sum. That is

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− . . . ,

a fact that was known not only by Gregory (; - ), but Leibniz (; - ), Isaac Newton (; -
), and, almost two centuries earlier than any of these well-known mathematicians, by the Indian
mathematician Nilakantha (; - ).

62



Chapter 5

Sizes of Infinity

I am so in favor of the actual infinite that instead of admitting that Nature abhors it, as is
commonly said, I hold that Nature makes frequent use of it everywhere, in order to show more
effectively the perfections of its Author. Thus I believe that there is no part of matter which
is not - I do not say divisible - but actually divisible; and consequently the least particle ought
to be considered as a world full of an infinity of different creatures.

Georg Cantor (; - )

No one will expel us from the paradise that Cantor has created.

David Hilbert (; - )

5.1 Counting

Our intuition suggests one Infinite; one definitive, universal, unlimited Infinite. As such Galileo’s
warning that “we cannot speak of infinite quantities as being the one greater or less than another,”
may seem entirely reasonable - infinity can have only one “size.”

Nonetheless, it may have been suprising to see, during your exploration of the Wheel of Aris-
totle, that the number of points on a large circle is the same as the number of points on a small
circle. We matched the points - all infinitely many of them - in a one-to-one way.

As described in Discovering the Art of Geometry, the discovery of perspective drawing was an
important development in the history of art. It was also important mathematically. As Rudy
Rucker (; - ) tells us:

Intellectually, perspective [drawing] is a breakthrough, because here, for the first time,
the physical space we live in is being depicted as if it were an abstract, mathematical
space. A less obvious innovation due to perspective is that here, for the first time,
people are actually drawing pictures of infinities.1

Perspective drawing is a valuable tool in our efforts to compare different sizes of infinity.
Figure 5.1 shows a basic one-point perspective drawing . Notice that all lines parallel to the
line of sight of the viewer converge to the vanishing point which represents infinity. The other

1From Mind Tools: The Five Levels of Mathematical Reality.
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figure shows how a point at infinity allows us to match, i.e. put in a one-to-one correspondence,
the points on a line of length one with the points in a line of length two. The number of points on
each is the same.

Figure 5.1: Projecting lines.

5.2 Counting by Matching

Without question, the most important contributions to human understanding of the infinite were
made by Georg Cantor (German mathematician; - ). As we shall see in the interlude, his work
as a champion of the infinite brought him great personal joy coupled with extreme professional
hostility and devastating emotional grief.

Cantor’s idea, and the profound revelations that follow from it, was simple. If we consider
pursuing a quantitative study of the infinite, we need a new way to “count.” In the realm of the
infinite our standard methods will be of little use. Cantor’s idea was to use matching as our way
of counting.

It is an obvious choice. Those who cannot count, very small children for example, are certainly
aware of such matching. They can tell you whether the number of popsicles in the freezer outnum-
ber the children at the party, or conversely, without counting - they simply try to match popsicles
to friends.

Since you already know how to count, let’s consider a few examples where matching is impor-
tant.

1. The NCAA Women’s Division 1 Basketball Tournament is a single elimination tournament
with 64 teams. Determine how many games are played in this tournament.

2. There are many ways to solve the problem in Investigation 1. A particularly elegant way
uses matching. Match losers to games to show how you can immediately determine how
many games are played in the tournament.
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3. How many games are played in a single elimination tournament with 2n teams? Explain.

4. Draw several polygons.2 For each count the number of vertices, aka corners, and edges.

5. How does the number of vertices seem to be related to the number of edges in your polygons.

6. Devise a nice way to match vertices and edges that proves why your relationship in Investi-
gation 5 holds for all polygons.

Figure 5.2: Strands of DNA.

Figure 5.2 is a schematic diagram of Deoxyribonucleic acid, also known as DNA. Notice that
there are two strands that come together like the two sides of zipper. Each letter represents one
of the bases adenine(A), cytosine(C), guanine(G), and thymine(T). A base on one strand binds to
the base opposite on the other strand. These are called DNA base pairs.

7. Look at the base pairs that make up the length of DNA in Figure 5.2. What do you notice
about these pairs?

In fact, the matching that you describe in Investigation 7 is the only kind of matching that is
possible, the so-called complementary base pairing . When organism grow DNA is replicated.
Tremendously long lengths of DNA which are twisted and knotted up somehow knows how to
unknot itself3, zips into two pieces, and then matches free base pairs to each strand to complete
the replication.

In other words, the very basis of life involves matching at the most basic level.

8. Think up your own non-trivial example of matching.

Now that you’ve thought about matching a bit, let’s return to counting. What is it about the
number three that gives it its “threeness”? What is common about three kids, three pebbles, three
Magi, three daily meals, three colors on a stoplight, three races in horseracing’s Triple Crown, and

2It is important to remember that polygons are simple, that is, their edges cannot cross and their is only one
interior region.

3Actually the field of knot theory, which is explored in Discovering the Art of Knot Theory in this series, is
playing a critical role in our efforts to understand the physical chemistry behind DNA replication.
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all other things we say there are three of? What they share is that we can match the elements
that make up each group (set) in a one-to-one way:

Addie ↔ granite ↔ Melchior ↔ breakfast ↔ red ↔ Kentucky derby
Jacob ↔ quartz ↔ Caspar ↔ lunch ↔ yellow ↔ Preakness stakes
KC ↔ beach glass ↔ Balthasar ↔ dinner ↔ green ↔ Belmont stakes

There are three in each group because each group can be matched with {1, 2, 3} which serves as
the defining three element group.

To make this formal in a mathematical way we simply use the language that we have developed
before. We notice that the objects of our study will be elements that we have grouped together
as sets - just like in Chapter 2. Our way of matching is a one-to-one correspondence between
two sets A and B whcih we define to be a rule4 which matches each element from A with exactly
one element of B and each element of B with exactly one element of A.

Previously we used an intuitive notion of the size of sets - we just counted to find the cardinality
of a given set. Now we can make a definition - one that we can use for the infinite as well. The set
{a, e, i, o, u} has cardinality 5, by definition, because it can be put in a one-to-one correspondence
with the set of the first five natural numbers, {1, 2, 3, 4, 5}. Namely, the matching rule that provides
the one-to-one correspondence is

a↔ 1 e↔ 2 i↔ 3 o↔ 4 u↔ 5.

9. In Chapter 2 we defined the notion of cardinality informally. Use the formal definition here to
check that the cardinality of the sets you investigated in Investigation 18 are the cardinalities
you assigned there.

Of course, not all sets have the same cardinality. How does our matching help us count here?
Here’s an example. The cardinality of {a, e}, which is 2, is strictly less than the cardinality of

{1, 2, 3, 4, 5}, which is 5, simply because

• a and e can be put in a one-to-one correspondence with any pair of elements from {1, 2, 3, 4, 5}

• a and e can never be put in one-to-one correspondence with all of {1, 2, 3, 4, 5} .

So we say the cardinality of {a, e} is strictly less than the cardinality of {1, 2, 3, 4, 5} and we write
2 < 5.

This is obvious, there’s nothing surprising here. Yet. . .
Let us see what happens when we compare infinite sets in this way.

5.3 Comparing Infinite Sets

10. Let S = {1, 4, 9, 16, . . .} be the set of squares. Name seven other elements of this set.

11. Intuitively, which is larger, the set S of squares or the set N = {1, 2, 3, . . .} of natural
numbers?

12. Express the set S by writing each element as a square.

4More formally, the “rule” is a function that is both one-to-one and onto.
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13. Use Investigation 12 to find a one-to-one correspondence between the set S of squares and
the set N of natural numbers.

14. What does Investigation 13 tell you about the relative sizes of the set S of squares and the
set N of natural numbers?

15. How does your answer to Investigation 14 compare with your answer to Investigation 11?

The apparent paradox indicated in Investigation 15 is known as Galileo’s paradox. This
paradox prompted Galileo to conclude:

We can only infer that the totality of all numbers is infinite, and that the number
of squares is infinite...; neither is the number of squares less than the totality of all
numbers, nor the latter greater than the former; and finally, the attributes “equal,”
“greater,” and “less,” are not applicable to infinite, but only to finite quantities.

As we have noted, Galileo’s conclusion is intuitively compelling and was generally accepted
by mathematicians and philosophers for millennia. What we will discover is that if we open our
minds as Cantor did, the infinite is a much richer, varied landscape.

Figure 5.1 shows a perspective-like drawing. The point 0 on L1 is matched with the point 0 on
L2 and the point 1 on L1 is matched with the point 2 on L2.

16. Using the matching illustrated in Figure 5.1, what point on L2 does the point 1
2 on L1

correspond to?

17. Similarly, what point on L1 would the point 1
4 on L2 correspond to?

There is an enlarged version of Figure 5.1 in the appendix. Use it to help with the following
investigations.

18. What point on L2 does the point 7
8 on L1 correspond to?

19. What point on L1 does the point 11
16 on L2 correspond to?

20. Explicitly find the correspondence between several points on L1 and L2.

21. Can you find a general rule or description to describe the one-to-one correspondence between
the points on L1 and L2 precisely?

22. Adapt Figure 5.1 to find a one-to-one correspondence between lines L1 of length one and L3

of length 3.

23. Can you describe this one-to-one correspondence precisely as you did the other in Investiga-
tion 21?

24. Adapt Figure 5.1 to find a one-to-one correspondence between lines L1 of length one and L10

of length 10.

25. Can you describe this one-to-one correspondence precisely as you did the other in Investiga-
tion 23?
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26. Will the method you have been using provide a one-to-one correspondence between any two
lines with finite lengths? Explain.

27. Can you use this method to find a one-to-one correspondence between a line L1 of length
one and a line L∞ which extends indefinitely in both directions? Explain.

Consider Figure 5.3 below, where points on the semicircle LCircle are projected onto the line
L∞ extending indefinitely in both directions. In three dimensions projections of this sort are
the fundamental tool used to map our spherical earth onto flat maps. All projections introduce
distortions, the type (e.g. distorted areas, distorted distances, or distorted angles) of which depends
on the mathematical nature of the projection chosen. Which map is “best” is a continuing source
of significant controversy.5

Figure 5.3: Stereographic projection.

28. Does Figure 5.3 help provide a one-to-one correspondence between LC and L∞? Explain.

29. What do all the results in Investigations 21-28 tell you about the cardinalities of line seg-
ments?

5.4 Sets of Sets

The notion of a set is fundamental to all of mathematics. Cantor was lead to a study of the foun-
dations of set theory by uncoverning surprising examples in trying to solve practical mathematical
problems. One of his most fundamental contributions, known as Cantor’s theorem, requires a
fundamental observation that we can create sets of sets.

Whenever all of the elements of a set B also belong to a set A we say B is a subset of A and
we write B ⊂ A. For example, {a, e, i, o, u} ⊂ {a, b, c, . . . x, y, z} and {1, 3, 5, . . .} ⊂ {1, 2, 3, . . .}.

30. Find all subsets of the set {1, 2, 3, 4} which have cardinality three. (Note: Don’t forget, a
subset is a set itself and so its elements should be contained by braces.)

31. Find all subsets of the set {1, 2, 3, 4} which have cardinality two.

32. Find all subsets of the set {1, 2, 3, 4} which have cardinality one.

Cantor said a “set is a many that is thought of as a one.” Let’s see how we can apply that to
make sets of sets.

5See, for example, the discussion in Discovering the Art of Geometry in this series.
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33. The New England Patriots are a professional football team in the National Football League
(NFL). Explain how we can think of the Patriots as a set. What are the elements of this set?

There are 32 teams in the NFL. We can make this many into a one - a set - easily:
NFLTeams = {Bills, Steelers, Browns, Raiders, Chiefs,. . . , Saints, Patriots} .

34. Tom Brady is the quarterback of the Patriots, so he is a member of that team/set. Explain
why Tom Brady is not a member of the set NFLTeams.

35. If we wanted to create the set NFLPlayers which consisted of all current NFL players, how
would it differ from NFLTeams? How would the cardinlities of these two sets differ?

An important way to make sets of sets is to form the power set of a given set S. This set is
written P (S), and is, by definition, the set of all subsets of S.

It is typical to say that a set is a subset of itself, after all, each element in the (sub)set is also
an element of the set. It is also typical to say that the set which contains no elements is a subset
of each set. This trivial set is called the empty set and is denoted by ∅.

36. Let S = {1, 2, 3, 4}, as above. Use your results above to write out the power set P (S) in its
entirety. (Hint: There should be 16 elements, each of them a set in its own right.)

37. Suppose now we removed the element 4 from the set S. I.e., suppose S = {1, 2, 3}. Write
out the new power set P (S).

38. What is the cardinality of the power set P (S) in Investigation 37?

39. Now suppose we have also removed the element 3 so S = {1, 2}. Write out the power set
P (S).

40. What is the cardinality of the power set P (S) in Investigation 39?

41. Suppose finally that we removed the element 2 as well so S = {1}. Write out the power set
P (S).

42. What is the cardinality of the power set P (S) in Investigation 41?

43. Using the results of these investigations, how does the cardinality of a finite set S appear to
be related to the cardinality of its power set P (S)?

44. The pattern you described in Investigation 43 continues indefinitely. Explain why it is
appropriate to write

Card (P (S)) = 2Card(S).

5.5 Cantor’s Theorem and Transfinite Cardinal Numbers

Numbers denoting the cardinality of sets are called cardinal numbers. We know there are sets
of cardinality 1, 2, 3, . . .. Cantor’s theorem shows us that there is an entire heierarchy of cardinal
infinities beyond the finite cardinal numbers. His theorem is as follows:

Theorem 5. (Cantor) Given any sets S, the power set P (S) has a strictly larger cardinality.
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In light of what you saw in Investigation 44, Cantor’s theorem does not seem surprising.
However, Cantor’s theorem applies to infinite sets as well and thus guarantees that there are
strictly larger sizes of each infinity!

To give it a symbolic name, we denote the cardinality of the natural numbers by ℵ0 = Card(N).
Here ℵ is aleph, the first letter in the Hebrew alphabet. The subscript 0 is because this is the
first, or smallest, infinite cardinal number.

45. Explain why the cardinality of the set of squares {1, 4, 9, 16, . . .} is ℵ0.

46. Explain, directly without the use of Cantor’s theorem, why the power set of the natural
numbers, P (N), must be an infinite set.

47. Mathematicians generally refer to the cardinality of P (N) by 2ℵ0 . Explain why.

48. What does Cantor’s theorem tell you about the relative sizes of the two infinite cardinal
numbers ℵ0 and 2ℵ0?

49. Because P (N) is itself a set, we can form its power set - P (P (N)). Why is 22
ℵ0

a good name
for the cardinality of this set of sets?

50. What does Cantor’s theorem tell you about the relative sizes of the cardinal numbers ℵ0,

2ℵ0 , and 22
ℵ0

?

51. Explain how this process can be extended indefinitely to find an inifinite number of different
sizes of infinite cardinals.

As we describe in the Interlude, Cantor was a deeply religious man who was attacked by
many for his exploration of the infinite. Throughout his groundbreaking work Cantor clearly
distinguished between what he referred to as transfinites and what others thought of as completed
infinities. Cantor’s defense, in his own words, is:

I have never proceeded from any “Genus supremum” of the actual infinite. Quite the
contrary, I have rigorously proven that there is absolutely no “Genus supremum” of
the actual infinite. What surpasses all that is finite and transfinite is no “Genus”; it
is the single, completely individual unity in which everything is included . . . which by
many is called “God.”6

52. Explain how your result in Investigation 51 is related to Cantor’s quote about God.

53. Find and then briefly describe several other important mathematical and/or scientific devel-
opments whose proponents were attacked because their views did not conform to prevailing
religious views.

54. How might we judge these controversies in hindsight given the benefits of a great many years
experience?

6Quoted in Georg Cantor: His Mathematics and Philosophy of the Infinite by Joseph Warren Dauben, p. 290.
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5.6 Hilbert’s Hotel

The development in the previous section of an infinite heirarchy of infinities of increasing size
relied on Cantor’s theorem and building sets of sets. How, you may ask, do we know that Cantor’s
theorem is true? At a major conference in 1999, the author gave a talk entitled “Cantor’s Theo-
rem: Mathematics’ Most Accessible Masterwork.” The proof of Cantor’s theorem, which included
clarifying examples, fit on less than one-half of a single overhead slide which used 36 point font!7

Alas, if you find sets of sets a bit abstract, this proof is not entirely enlightening. If you feel this
way a natural question to ask is:

If there are infinitely many different sizes of infinity, can’t you just show us an example of two
different sizes?

Good question. This is where we now turn.
One way of describing one-to-one correspondences between certain infinite sets has become

known as Hilbert’s Hotel after David Hilbert (; - ).8

You really need to use your imagination to conceptualize Hilbert’s hotel. Several people have
written science fiction about this hotel. Here’s our version:

You awake, groggy and a bit disoriented. You walk around but do not recognize much. Up the
street you see a strange but otherwise unimposing building which appears to be called Hilbert’s
hotel. Your view of it looks like the image in Figure 5.4.

At first the building seems very tall, like you are viewing it from its base in an exaggerated
perspective. But you realize that the floors are actually getting smaller very quickly.

Nonetheless, it looks harmless enough, so you go in.
It seems nice. You notice a very big group of alien looking creatures. Each wears a number on

its chest, almost like a nametag, and holds in their hand a small card which is similarly numbered.
The look at like Figure 5.5.

You approach the desk, hoping there is an available room where you can regroup and try to
figure out what’s going on.

“Do you have any available rooms,” you ask.
The clerk responds, “No, we are completely full. The natural numbers have the entire hotel

booked.” You pause, trying to figure out your next move. “Would you like to stay?” “I thought
you said you were completely full.” “We are, but this is Hilbert’s hotel, we have infinitely many
rooms.”

You should have just accepted the offer, but you can’t help asking, “How can you have infinitely
many rooms?” “We have 20 rooms on each layer and infinitely many layers” the clerk says
nonchalantly. You think back to your strange view of the hotel’s facade. “Do you want a room
or not?” the clerk asks. “Yes, please.” “Do you mind being scaled?” “Yes, scaled. Compressed.
Reduced. Shrunk. Even though it is perfect harmless, some people object to this. So we put them
in the lower layers. If you’re on the second layer the elevator only scales you to have your size. On
the third layer you’re scaled to one-quarter of your size.” The clerk senses your confusion. “I’ll
just put you in Room 1 right here in the first layer so you are comfortable.”

7For a similar example in print, see p. 50 of Mathematics: A New Golden Age by Keith Devlin.
8In One, Two, Three . . . Infinity George Gamow (; - ) attributes this description to “the unpublished, and

even never written, but widely circulating voluems: “The Complete Collection of Hilbert Stories” by Richard
Courant (; - ).”
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Figure 5.4: A view of Hilbert’s hotel.

“Hey 1,” the clerk yells. “We need to accomodate this newbie. Can you please get your group
to all move down a room?” “Certainly,” 1 responds. S/he hands you the card imprinted with a 1.
You realize that it is a key card for your room, Room 1. You see 1 return to the group. 2 hands
1 the keycard for Room 1, 3 hands 2 the keycard for Room 2, and so on. 20 gives up the keycard
for Room 20 and heads off to the elevator. “Where’s 20 going?” you wonder, feeling badly that
you’ve kicked somebody out of their room. “Up to level 2. Room 21 will now be 20’s room and
the other guests will also move down. 999,999,999 will be really happy to have the Million Room.”

55. Describe all guests that have to move to another layer due to your arrival.

56. Suppose another guest arrived looking for a room. Could they be accomodated? How?

You sleep soundly and as you awake you hope that you are back in your own world. As you
adjust to the rooms low light you realize you are still at Hilbert’s hotel. After a shower you get
dressed and head to the lobby to find some food.

As you approch the desk a different clerk yells at you, “You’re late. Where have you been,
we’re swamped? Here’s your jacket.” You take the jacket which you see has your name on the left
and “mat̂re d́” on the left.

People - of the alien number sort that you saw yesterday - are clammoring for rooms. You see
0,−1,−2,−3,−4 and −5 and a long line leading out the door. “Are all of the negative integers
here?” you wonder.

Quickly you look at the registry from two nights before. It looks as follows:
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Figure 5.5: Some of the natural number guests at Hilbert’s hotel.

Room Number Guest Name
1 1
2 4
3 9
4 16
5 25
...

...

57. With the registry above, did the “squares” fill every room of Hilbert’s hotel? Explain.

58. The positive integers {1, 2, 3, . . .} are staying another night. How can you accomodate 0 and
the negative integers {. . . ,−3,−2,−1}. (Note: And there is no room-sharing allowed! Hint:
What happens if you move 1 to Room 4 and 2 to Room 6?)

59. Later in your shift the phone rings. The caller asks if there is a vacacy for Sunday night.
You look in the registry and see that no rooms are booked. “How many in your party?” you
ask. The caller responds “ℵ0.” Can the group be accomodated? If so, explain precisely how
you can assign rooms.

There are many other important sets that can be accomodated by Hilbert’s Hotel - including
those we might think would be too big. For example, the set of all fractions (a.k.a., the rational
numbers) can be accomodated; they have cardinality ℵ0. Even the set of solutions of every
algebraic equation (which are called the algebraic numbers) can be accomodated. They too
have cardinality ℵ0.

5.7 Nondenumerability of the Continuum

What Cantor showed in his groundbreaking 18739 discovery, was that the set of all points that
make up the unit interval of the real number line, [0, 1], cannot be accomodated by Hilbert’s
Hotel. This set of points is too big. In other words, the cardinality of the unit interval [0, 1], which
is usually denoted by Card([0, 1]) = c for continuum, is strictly greater than ℵ0! In other words,
a set that we know intimately has a higher cardinality than ℵ0.

9See, e.g., p. 50 of Georg Cantor: His Mathematics and Philosophy of the Infinite by Joseph Warren Dauben.
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To show that the points in the unit interval cannot be accomodated by Hilbert’s Hotel we
need to show that every possible Hilbert’s Hotel registry will leave out at least one point in the
unit interval. To get a sense of what this entails, we are returning you to your role of mat̂re d́ of
Hilbert’s Hotel.

Room Assignment Guest
1 0. . . .
2 0. . . .
3 0. . . .
4 0. . . .
5 0. . . .
6 0. . . .
7 0. . . .
8 0. . . .
...

...

Figure 5.6: Guest Registry for [0, 1] - first attempt.

60. Write down 20 different points that belong to the unit interval [0, 1].

61. Describe the points in [0, 1]. What can you say about them as decimals?

62. Assign some point in [0, 1] to Room 1 in the registry above by writing its decimal digits in
the appropriate places. If the decimal is finite, after it terminates write zeroes to the right
of the final decimal digit as in 0.7168366610 = 0.716836661000 . . . If the decimal is infinite,
give at least the first ten digits.

63. Assign some other point in [0, 1] to Room 2 in the registry above, as you did in Investiga-
tion 62.

64. Assign some remaining point from [0, 1] to Room 3 in the registry above, as you did in
Investigation 62.

65. Assign some remaining point from [0, 1] to Room 4 in the registry above, as you did in
Investigation 62.

66. Repeat Investigation 65 four more times.

67. If you continued to assign rooms like this, would there ever be a point at which every point
in [0, 1] had been assigned a room? Explain.

68. Suppose you were able to assign rooms faster and faster so that in a finite amount of time
all infinitely many rooms in Hilbert’s Hotel had been assigned - almost in reverse of how we
can add up infinitely many terms of a series and get a finite sum. Do you think that then
all of the points in [0, 1] will have been accomodated? Explain.
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It is my sad duty to inform you that you that even if you have completed your entire registry,
you have not assigned rooms for all members of [0, 1]. I know this because you are going to help
me find a number of [0, 1] that you have not assigned a room to.

We’re going to find this number one decimal at a time. We will represent this number by the
decimal 0.d1d2d3d4 . . .

69. Circle the first decimal digit of the guest you have assigned to Room 1. If this digit is a 1,
then define d1 = 3. If it isn’t a 1, then define d1 = 1.

70. Circle the second decimal digit of the guest you have assigned to Room 2. If this digit is a
1, then define d2 = 3. If it isn’t a 1, then define d2 = 1.

71. Circle the third decimal digit of the guest you have assigned to Room 2. If this digit is a 1,
then define d3 = 3. If it isn’t a 1, then define d3 = 1.

72. Continue this process to define the digits d4, d5, d6, d7 and d8.

73. If you had assigned rooms for more points in [0, 1] could you continue to assign decimal digits
dn in this same way? For how long?

74. Now write down the number 0.d1d2d3d4 . . . Does this decimal represent a unique, well-defined
real number in the unit interval [0, 1]? Explain.

75. Explain why 0.d1d2d3d4 . . . is not the guest in Room 1.

76. Explain why 0.d1d2d3d4 . . . is not the guest in Room 2.

77. Explain why 0.d1d2d3d4 . . . is not the guest in any of the Rooms 3 - 8.

78. Explain how I know that 0.d1d2d3d4 . . . will not be in Room 37.

79. Explain how I know that 0.d1d2d3d4 . . . has not been assigned to any of the rooms that you
assigned - even if you have assigned every room in Hilbert’s hotel.

You have failed in your task of assigning all points in [0, 1] a room. But so did your peers.
This same rule that I used to find a point that you did not assign a room to can be used to show
that your peers have missed points as well. Their roomless guest points will likely be different,
but they will be found in the same way. In other words, this rule will find a point that is missing
from any possible guest registry for Hilbert’s Hotel.

From this failure we can only conclude that no such guest registry is possible; i.e. that the
points in [0, 1] are too numerous to fit in Hilbert’s Hotel. This means that the cardinality c is a
different cardinality than ℵ0. We now have two different sizes of infinity.

5.8 The Continuum Hypothesis

Cantor rapidly developed the heirarchy of infinite cardinals that begins as we have described above
as a result of Cantor’s theorem. As we shall discover in the next chapter he also developed an
infinite heirarchy of infinite ordinals. And he developed a beautiful relationships between these
two different conceptions of quantifiable infinite.

75



DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Yet he spent much of the latter part of his life vexed by a single question: are there sets
whose cardinality is between ℵ0 and c? Cantor believed that there was no such set - that the
infinite cardinal c followed the first infinite cardinal ℵ0 immediately. This result became known as
the continuum hypothesis. It is likely that his inability to solve this problem, coupled with his
contentious relationships with other prominent mathematicians of the day about matters involving
the infinite, contributed to his declining mental status. So important is this problem that it was the
first of Hilbert’s problems, a list of 23 problems posed in 1900 that were to focus mathematical
research through the twentieth century.

Cantor died before this problem was resolved.
But Cantor had the last laugh. Beginning with the most widely used basis for set theory10

Kurt Godel (; - ) proved in 1938 that the continuum hypothesis is consistent with the axioms; i.e.
it cannot be disproved. But, decade after decade, no proof was forthcoming. In 1963, Paul Cohen
(; - ) proved that the continuum hypothesis cannot be disproved with these same axioms. In other
words, these two mathematicians proved that Cantor’s continuum hypothesis was undecidable .11

Cantor did not know the answer; nobody else will either.

80. Classroom Discussion: In writing about Cantor’s proof of the uncountability of the con-
tinuum, William Dunham (American mathematician and author; - ) wrote:

Any layman who, in 1874, had visited Paris to see the paintings of Claude Monet
would have been struck by the “impressionist” techniques the artist had introduced.
Even the casual observer would have seen in Monet’s brushwork, in his rendering of
light, a significant departure from the canvases fo such predesessors as Delacroix
or Ingres. Clearly something radical was going on. Yet in this mathematical
landmark of the same year, Georg Cantor had set our upon a course every bit
as revolutionary. It is just that mathematics on the printed page often lacks the
immediate impact of a radical piece of art.

You have now had the opportunity to work with this radical idea that there are different
sizes of infinity. You have “seen” it with your own intellect. What do you think? Is this
piece of work worthy of the title “revolutionary”? Is this work beautiful? Do you see how it
may have a lasting impact on all future considerations of the infinite?

10Zermelo-Fraenkel set theory with the inclusion of the axiom of choice.
11For more on issues related to proof, undecidability, and incompleteness, see see Discovering the Art of Logic,

Proof, Truth, and Certainty in this series.
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5.9 Further Investigations

5.9.1 Comparability of Transfinite Cardinals

We showed above that the points in the unit interval [0, 1] cannot be accomodated by Hilbert’s
Hotel. This suggests that ℵ0 ≤ c. But how do we know these numbers are even comparable?

F1. Match each natural number n with the real number 1
n . Show that this matches the natural

numbers with a subset of [0, 1].

F2. Explain how this shows that ℵ0 ≤ c.

In standard arithmetic knowing that a ≤ b and b ≤ a guarantees that a = b. A similar
result holds in cardinal arithmetic. But here it is not a triviality, because the equality means
that we can find a one-to-one correspondence between two sets from knowledge of one-to-one
correpondences with proper subsets. This critical result is known as the Cantor-Schroder-
Bernsetein theorem .

5.9.2 Foreshadowing Russell’s Paradox

Cantor noted that his theorem illustrates a deep paradox of set theory. Having talked about many
different sizes of infinity we might want to think about the set of all sets. Name this set U . In
some sense, U is the largest possible set - the universe of all sets.

F3. Apply Cantor’s theorem to the set U . What conclusion does it allow you to make about
the relative sizes of U and P (U)?

F4. Explain how the conclusion of the previous problem contradicts the very definition of the
set U .

In contrast with our earlier paradoxes, this paradox is neither caused by limitations of Cantor’s
theorem nor our conceptions of the infinite. It is a logical paradox based on our intuitive ideas of
the notion of a set, one that can be formulated in settings where the infinite is not involved. The
most basic version of this paradox is called Russell’s paradox which is considered in detail in the
volume Discovery the Art of Reasoning, Proof, Logic and Truth in this series.

While troubling, these paradoxes are something mathematicians have come to live with:

The set-theoretical paradoxes are hardly any more troublesome for mathematics than
deceptions of the senses are for physics.

Kurt Gödel (; - )
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Figure 5.7: Larger version of Figure 5.1.
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Chapter 6

Georg Cantor: Chamption of the
Infinite

This view [of the infinite], which I consider to be the sole correct one, is held by only a few.
While possibly I am the very first in history to take this position so explicitly, with all of its
logical consequences, I know for sure that I shall not be the last!

Georg Cantor (German mathematician; 1845 - 1918)

My theory stands as firm as a rock; every arrow directed against it will return quickly to its
archer. How do I know this? Because I have studied it from all sides for many years; because
I have examined all objections which have ever been made against the infinite numbers; and
above all because I have followed it roots, so to speak, to the first infallible cause of all created
things.

Georg Cantor (; - )

Georg Cantor was the eldest of six children born to Georg Woldemar Cantor and Maria Anna
Bohm. He was raised as a strict Lutheran in St. Petersburg, Russia, then Weisbaden and Frankfurt,
Germany. His father was a successful businessman despite several difficult failures. In addition
to instilling strong religious faith and diligent work ethic in his children, the elder Georg Cantor
also expected his children to be active students of the liberal arts and sciences. This included the
study of music, an area where many relatives were well known, literature, art, mathematics, the
physical sciences and the natural sciences. In the elder Cantor’s own words:

To the procurement of diverse, thorough, scientific and practical knowledge; to the
perfect acquisition of foreign languages and literatures; to the many-sided development
of the mind in many humanistic disciplines – and of this you must always be thoroughly
conscious! – to all this the second period of your life, your youth, now just beginning,
is destined, in order first to equip yourself with dignity by means of all this for those
struggles yet to come.

While a strong supporter of his children, he had unusually high expectations for his first born
son and namesake Georg. In a letter to the then fifteen year old Georg on the occasion of his
confirmation (the same letter quoted above) the elder Cantor seemed to predict the course of his
son’s future:
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How often the most promising individuals are defeated after a tenuous, weak resistance
in their first serious struggle following their entry into practical affairs. Their courage
broken, they atrophy completely thereafter, and even in the best case they will still
be nothing more than a so-called ruined genius! . . . But they lacked that steady heart,
upon which everything depends!... This sure heart, which must live in us, is: a truly
religious spirit!

. . . I close with these words: Your father, or rather your parents and all other members
of the family both in Germany and in Russia and in Denmark have their eyes on you as
the eldest, and expect you to be nothing less than a Theodor Schaeffer [young Cantor’s
teacher] and, God willing, later perhaps a shining star on the horizon of science.

By 1862 Cantor’s studies had come to a crossroads. He was drawn to mathematics, but was
worried that this calling was not among his father’s expectations. His father, who would die a
short time later in his mid-fifties, was in fact supportive of Cantor’s desire to pursue mathematics.
Georg’s glowing reaction to this support, a state that would later become part of a cycle of manic
highs and lows, is evident in a letter to his father:

My Dear Papa! You cannot imagine how very happy your letter made me; it determines
my future. The last few days have left me in doubt and uncertainty. I could reach no
decision. My sense of duty and my own wishes fought continuously one against the
other. Now I am happy when I see that it will not longer distress you if I follow my
own feelings in this decision. I hope that you will still be proud of me one day, dear
Father, for my soul, my entire being lives in my calling; whatever one wants and is
able to do, whatever it is toward which an unknown, secret voice calls him, that he will
carry through to success

For the next several years Cantor studied at the University of Berlin under some of the great-
est living mathematicians, including: Kummer, Kronecker, and Weierstrass. After passing the
required exams he became a Privatdozent at the university in Halle, near Leipzig. Originally in-
terested in number theory, Cantor soon turned toward analysis where critical progress was being
made in understanding the foundations of calculus after a 200 year struggle that had seen little or
no previous progress.

In Cantor’s work the nature and structure of the real number system and its subsets proved
to be a critical and insufficiently understood landscape. By 1872 he had essentially solved one
of the main open problems in the area of trigonometric series. In solving this problem Cantor
realized that “the number concept. . . carries within it the germ of a necessary and absolutely
infinite extension.” His investigation of the infinite, or the transfinite as Cantor called it, that this
solution necessitated would occupy the majority of Cantor’s subsequent mathematical life.

Cantor’s work on the infinite was as revolutionary as it was unexpected and controversial.
Cantor was almost single-handedly responsible not only for the germination of the critical ideas
that brought rigor and certainty to the study of the infinite, but also for unceasing devotion to
nurturing this theory so that “once mathematicians were ready to consider the significance of the
transfinite numbers, the entire theory would be ready to stand on the foundations he had given
it.” So complete and revolutionary was this development that it is unparalleled in scope and
significance by any event in the history of mathematics short of Newton’s invention of calculus.

Yet this revolution was not completed without considerable hardship on Cantor. The infinite
and the infinitesimal had been banished by many mathematicians as the root cause of the unstable
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foundation for calculus. Cantor’s work met vigilant resistance at every stage. The strongest
resistance came from the German mathematical community lead by Leopold Kronecker (German
mathematician; - ). Cantor was unable to lure prominent mathematicians to collaborate with
him at the Halle and was unable to secure a prominent position at a more prestigious German
university even as his monumental efforts were being recognized by mathematicians and many
learned societies outside of Germany.

In addition Cantor’s strong philosophical and theological beliefs made his ongoing defense
of transfinites that much more difficult. His transfinites were broadly regarded as heretical –
contrary to the existence of the Almighty. For such a deeply faithful man raised in the strict
Lutheran tradition this was unacceptable. Hence, his efforts to secure the proper place of the
transfinites took on a critical theological perspectives as well, and he addressed this issue in detail
in many publications. Cantor’s theory met with philosophical objections which he felt compelled
to address. Finally, perhaps due in part to his fathers hope that Cantor would devote himself to a
more applicable calling than pure mathematics, Cantor attempted to use his transfinites to develop
an “organic explanation of nature.” Cantor was compelled to defend his transfinites against the
attacks of mathematicians, theologians, philosophers, and scientists simultaneously.

Cantor’s great strength and determination, religious faith, and profound intellectual calling
– instilled in him since childhood – allowed him to make remarkable progress in uncovering the
mystery of the infinite and defending it against myriad attacks from many fronts for some thirty
years. Unfortunately, a fragile mental state did not allow Cantor to continue to champion his
theory of transfinites effectively past the age of sixty. Recent evidence suggests Cantor’s mental
difficulties can be attributed to manic depression. His first serious mental breakdown was in 1884.
While he did not suffer another serious breakdown until 1899, the same year his son died four days
before his fourteenth birthday, his anxiety about opposition to his theory and perceived persecution
increased dramatically. By the time of the Third International Congress for Mathematicians in
1904 he had been in the sanitarium twice more for extended periods. At this Congress Jules
Konig presented a paper that appeared to destroy the heart of Cantor’s theory. Cantor fumed,
hounding notable mathematicians to regale them with possible stumbling blocks in Konig’s theory.
While Konig’s argument eventually was shown to be poorly grounded, this episode marked a final
turning point in Cantor’s defense of the transfinites. After this he spent more and more time in
sanitariums, often for periods close to a year. Shortly before his death on 6 January, 1918, at the
age of 73, Cantor wrote a poem to his wife which ends as follows:

To suffer gladly, pen a poem,

To escape the world I’m in.

Perhaps the most sticking irony in the celebrated yet troubled life of Georg Cantor is the nature
of two mathematical difficulties that plagued his theory so strongly but resisted his greatest efforts.
Cantor’s theory of transfinites relied heavily on the extant theory of sets. By the turn of the century
there were many paradoxes that Cantor’s theory seemed to give rise to. It is now quite clear that
it was not Cantor’s theories of the infinite that gave rise to these paradoxes, rather it is our naive
notions of set theory. These notions and the extant theory contain in their most basic elements
a host of damaging paradoxes that arise even in finite situations. Second, the key missing result
in Cantor’s entire theory was what we referred to as the Continuum Hypothesis at the end of the
previous chapter. His inability to obtain closure on this key result was certainly a devastating
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failure to him. But, as we have said, herein lies the ultimate irony - within the confines of typical
set theory, the Continuum Hypothesis is undecidable!
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Chapter 7

The Ordered and Surreal
Landscapes of Infinity

The transfinite numbers are in a certain sense themselves new irrationalities and in fact in my
opinion the best method of defining the finite irrational numbers is wholly similar to, and I
might even say in principle the same as, my method described above of introducing transfinite
numbers. One can say unconditionally: the transfinite numbers stand or fall with the finite
irrational numbers; they are like each other in their innermost being; for the former like the
latter are definite delimited forms or modifications of the actual infinite.

Georg Cantor (; - )

Instead of worrying if we really can squeeze a number like 1
ω

in above zero but below 1
2
, 1
3
, 1
4
, 1
5
,

etc., Conway suggests that we relax and just define 1
ω

in terms of the gap between zero and
all the 1

n
.

Rudolf von Bitter Rucker (American Mathematician and Author; 1946 - )

7.1 What’s Next?

As we’ve seen, Cantor’s theory of cardinal numbers is based in large part on a playful, almost
childlike use of matching to determine “how big?” It is a basic idea which Cantor followed logically
to its extreme, into the realm of the transfinites.

In considering the same natural numbers 1, 2, 3, . . . the notion of “what’s next?” is an equally
basic idea. This insight was clear to Cantor who extended this idea to its logical extreme much
as he had the notion of “how big” to create the cardinal numbers. The result was the birth of
another system of numbers, the ordinal numbers, which we will consider now.

7.2 The Ordinal Numbers

The natural numbers 1, 2, 3, . . . are endowed with a natural order. Each number is the immediate
predecessor of the number which follows it. We have written them in this natural order from left
to right. Of course, this is an order that continues indefinitely. At any point in the order the
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child’s injunction “plus one” takes us to the next natural number in the order. From 9 we move
to 9 + 1, a.k.a. 10.

But we need not think of 10 only as the number immediately following 9; its immedi-
ate successor . We can also think of 10 as the immediate successor of the whole collection
{1, 2, 3, 4, 5, 6, 7, 8, 9} simultaneously. This observation launches us into the transfinite realm once
again, for we think beyond the immediate successor of any finite collection of natural numbers
to the immediate successor of the entire collection; N = {1, 2, 3, . . .}. Of course this immediate
successor, which Cantor denoted by ω, will be infinite because it succeeds every finite number. ω
is called the first transfinite ordinal.

But then, having built a number system on the notion of successors, ω would again have an
immediate successor itself – a “plus one.” Naturally this is ω + 1. And the immediate successor
of ω + 1 is, of course, ω + 2. Then ω + 3. And ω + 4. And so on indefinitely. Thus we have the
ordinal numbers:

1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .

What lies beyond the last ellipsis? These transfinite ordinals are followed by many, infinitely many,
other transfinite ordinals. We have ω+1, ω+2, ω+3, ω+4, . . . What could the immediate successor
of this collection of ordinals be? Since each of these numbers is simply ω plus a natural number,
the immediate successor should be ω plus the immediate successor of all the natural numbers. But
this is just ω. Thus, the immediate successor of the ordinals ω+1, ω+2, ω+3, . . . is the transfinite
ordinal ω + ω. Certainly ω + ω is deserving of the symbol 2ω. And then we can begin again:

1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , 2ω, 2ω + 1, 2ω + 2, 2ω + 3, ..., 3ω, 3ω + 1, 3ω + 2, 3ω + 3, . . .

1. Above we showed how the transfinite ordinal 2ω arose. Show how the transfinite ordinal 3ω
arises.

2. Show how the transfinite ordinal 4ω arises.

3. Show how the transfinite ordinal 5ω arises.

4. Can you generalize Investigations 1-3 to show how the transfinite ordinal nω arises where n
is any natural number? Explain.

5. Now that we have the transfinite ordinals ω, 2ω, 3ω, 4ω, . . . what is their immediate successor?
Explain.

6. Explain why it is appropriate to write the transfinite ordinal just obtained as ω2.

7. Now we begin again with ω2 forming ω2+1, ω2+2, ω2+3, . . . What is the immediate successor
of this collection?

8. Show how one obtains the transfinite ordinal ω2 + ω + 3.

9. After passing by several more limiting processes, we arrive at the transfinite ordinal 2ω2.
Then, after several more limiting processes 3ω2. Then 4ω2. And 5ω2. Etc. What is the
immediate successor of this collection?
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10. Explain why it is appropriate to write the transfinite ordinal just obtained as ω3.

11. If we skip even more intervening limiting processes, we can go from ω3 to ω4. Then to ω5.
And then to ω6. Etc. What is the immediate successor of this collection?

12. Explain why it is appropriate to write the transfinite ordinal just obtained as ωω.

13. If we skip even more intervening limiting processes, we can go from ωω to ω2ω. Then to ω3ω.
Then to ω4ω. Etc. What is the immediate successor of this collection?

14. Explain why it is appropriate to write the transfinite ordinal just obtained as ωω
2

.

15. Explain how we can form ωω
ω

starting from ωω
2

.

16. In Chapter 1 we wrote truly large numbers using powers of 10. Using this as an analogy,
describe the largest transfinite ordinal you can.

17. Can you describe the immediate successor of the ordinal just described? Explain.

The rigorous construction of the cardinal numbers is essentially as we have explored in lesson 5.
Some critical subtleties necessary to rigorously construct the ordinal numbers have been replaced
here by intuitive suggestions. If we relax our standards of rigor slightly more we will be able to
glimpse a more fabulous number system which transcend even the ordinals – the surreal numbers.

In addition to the basic transfinite ordinal
omega we were able to construct many other transfinite ordinals above. This includes umbers like
ω2, ω2+ω+3, 3ω2, ω3, and ωω+1. This may suggest that we can use any of the standard operations
of arithmetic (addition, subtraction, multiplication, division, exponentiation) to construct new
ordinal numbers from 1, 2, 3, . . . and ω. In fact, we might even enthusiastically hypothesize that
all transfinite ordinals can be constructed in this way.

Alas, we begin to realize there are arithmetic combinations of ordinals that are notoriously
missing. Where for example might we find ω − 1? But ω was defined to be the immediate
successor of all of the natural numbers 1, 2, 3, . . . It appears that there is no ”room” for ω − 1 as
an ordinal.

7.3 The Surreal Numbers

In response to the challenge of an arithmetic of transfinite ordinals, in the mid 1960’s John Horton
Conway (English Mathematician; 1937 - ) created a new number system that dealt with these
difficulties. This number system, called the surreal numbers, found a place for numbers such as ω−1
and 1

ω . The latter is of historical import. For as described in the introduction to this chapter the
“evanescent” infinitesimal had long troubled the foundations of calculus. Yet consider the possible
meaning of 1

ω . As ω succeeds all of the natural numbers we have 1 < ω, 2 < ω, 3 < ω, . . . But this
means that 1

ω < 1, 1
ω < 1

2 ,
1
ω < 1

3 , . . . Certainly 1
ω should be non-negative. We wouldn’t expect

it to be equal to zero since there are transfinite ordinals beyond ω whose reciprocals should be
smaller than 1

ω . But the numbers 1, 12 ,
1
3 , . . . get smaller and smaller. In fact, they get indefinitely

close to 0. 1
ω is thus between 0 and points that become indefinitely close to zero. It is exactly

Berkelely’s “ghost of a departed quantity” in the flesh. It is not zero, but it is smaller than any
real number we can name. It is an infinitesimal! Yet it is not the only one. 1

ω+1 is another, as is
1
ωω , and etc. ; an infinity of infinitesimals trapped between 0 and the smallest of the small!
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18. Explain why the term “ordinal” is an appropriate title for the ordinal numbers.

19. Explain why the term “cardinal” is an appropriate title for the cardinal numbers.

20. What does the term “surreal” mean? Why do you think Conway chose this an a name for
the surreal numbers?

Use your knowledge about the relative sizes of ordinal numbers to decide which of the following
surreal numbers is larger:

21. 1
ω and 1

ω+1 .

22. 1
ω2 and 1

ω .

23. 3ω − 1 and ω2.

24. 0 and 1
ωω .

The surreal numbers are best introduced inductively, that is step by step. We start from its
most basic units: ↑ and ↓. When these symbols appear by themselves, they represent 1 and −1
respectively. But in conjunction with other occurances of these symbols you can only determine
the value of the arrows in relation to the other symbols that appear.

As we introduce the surreal numbers in this fashion it is most enlightening to organize them
into a tree. The first several steps are shown below:

Following the pattern in the tree above, write each of the following real numbers as surreal
numbers:

25. 4.

26. 2 1
2 .

27. 9.

28. 3
8 .

29. 5
16 .

Following the pattern in the tree above, write each of the following surreal numbers as real
numbers:

30. ↑↑↓↑ .

31. ↑↓↓↓↑ .

32. ↑↓↑↓↑ .

33. ↑↓↓↓↑↑ .

34. Write the natural numbers 5, 6, 7, and 8 as surreal numbers.

35. Can you think of a way to write ω as a surreal number? Is there any way to abbreviate this
notation to a reasonable size? Explain.
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Figure 7.1: Surreal number tree.

7.4 Genesis of the Surreal Numbers

The surreal numbers were invented in the early 1970’s by John Horton Conway (English math-
ematician; - ). Conway is a powerful and prodigous mathematician. One of his areas of specialty
is games. Shortly we will see a wonderful connection between the surreal numbers and games.

But first a note about how the world learned about surreal numbers is an order. Conway
ate lunch with Donald Knuth (; - ) one day shortly after he invented the surreal numbers.
Knuth was clearly interested in the topic as less than a year later he decided to explore these
numbers in detail. While he did the research needed to understand this number system he began
thinking about how one might teach others about these numbers. He decided to write a novelette,
entitled Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total
Happiness, about how people would go about developing such a theory. In the postscript he says:

As the two characters in this book gradually explore and build up Conway’s number
system, I have recorded their false starts and frustrations as well as their good ideas and
triumphs. I anted to give a reasonably faithful portrayal of the important principles,
techniques, joys, passions and philosophy of mathematics, so I wrote the story as I was
actually doing the research myself.

Hmmm. . . Although our book is not a novelette, we hope that some of these things have char-
acterized your exploration through this book; that you have experienced frustrations as well as
good ideas and triumphs; felt joy and passion.
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There is another parallel between Knuth’s goals with his novelette and our book:

I wanted to provide some material that would help to overcome one of the most seri-
ous shortcomings in our present educational system, the lack of training for research
work; there are comparatively little opportunity for students to experience how new
mathematics is invented, until they reach graduate school.

I decided that creativity can’t be taught using a textbook, but that an “anti-text”
such as this novelette might be useful. . . My aim was to show how mathematics can be
“taken out of the classroom and into life,” and to urge readers to try their own hands
at exploring abstract mathematical ideas.

Hmmm. . . An “anti-text”; kind of like this book?
This book, this novelette, a piece of literature, was in fact the first way in which the world

learned about surreal numbers. Up to the point of its publication, this system had not appeared
elsewhere in print!

7.5 The Hackenbush Game

I love mathematics not only for its technical applications, but principally because it is beau-
tiful; because man has breathed his spirit of play into it, and because it has given him his
greatest game - the encompassing of the infinite.

Rosza Peter (Hungarian mathematician; - )

Hackenbush is a game played by two players. Usually the players and Red and Blue, the line
segments are colored red and blue, and the line segments can be oriented in any desired way. Here,
since we are primarily interested in the connection to surreal numbers, our players will be Up and
Down. The playing board for a Hackenbush game, also called beginning position , is a collection
of line segments made up of ↑’s and ↓’s. The only condition on these segments is that from any
point on any segment you can eventually reach the ground by travelling continuously along the
arrows. I.e. no arrow can be disconnected from the ground.

Figure 7.2: Hackenbush beginning positions.

Several beginning positions are shown in Figure 7.2.
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To play the game players take turns removing one of their arrows. They can remove any single
arrow that they want. When this arrow is removed, all arrows that are no longer connected to the
ground are also removed. Turns alternate. If a player cannot move on their turn (because they
have no arrows left), they lose.

A sample game is shown in Figure 7.3. Here Down begins and in the last frame Up will remove
their ↑. Becuase there are no ↓’s left, Down loses as they have no move.

Figure 7.3: A sample Hackenbush game.

36. Choose an opponent. Use the second beginning position shown in Figure 7.2 to play a game
of Hackenbush. Record your moves and the winner.

37. HackenbushGame1Switch Now switch roles - let the person who played second play first.
Now replay the game from Investigation 36. Was the outcome the same or different?

38. Repeat Investigation 36 and Investigation ?? for the third beginning position shown in
Figure 7.2

39. Now make up your own beginning position and play another game.

40. Have your opponent make up a beginning position and play another game.

41. Are you starting to get an idea how the strategy of this game works? Explain.

So what is the connection to surreal numbers? In playing the game in Investigation 36 you
should have seen that the second player to play was always going to be the winner. When this
happens this is called a null Hackenbush game . Let us think of what the arrows in the beginning
board for this null Hackenbush game represent in surreal terms. The first chain represents the
surreal number ↑↑ which is the integer 2. The same is true for the second chain. The third chain
represents the surreal number ↓↓↓↓ which is the integer −4. The fact that this is a null Hackenbush
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Figure 7.4: Hackenbush beginning positions with −ω.

game means, in surreal terms, ↑↑ + ↑↑ + ↓↓↓↓= 0. In other words this Hackenbush games proves
the surreal analogue of the equation 2 + 2 + (−4) = 0 which we normally read as 2 + 2 = 4.

This is not very exciting with finite numbers where we are used to the arithmetic already.
What’s interesting is to use Hackenbush games for surreal numbers that are uniquely surreal.

In each of the examples below we have infinitely many arrows, denoted as usual with an ellipsis.
When you play the Hackenbush game and remove an arrow, you must explain precisely what arrow
you have removed. E.g. your move can be to remove the 37th arrow.

42. Play the Hackenbush game in Figure 7.4 several times. Is this a null Hackenbush game?

43. What surreal arithmetical statement does this Hackenbush game correspond to? Explain.

44. From this arithmetical statement, what surreal number do you think ↑↓↑↓↑↓ . . . represents?
Explain.

45. Now play the Hackenbush game in Figure 7.5 several times. Is this a null Hackenbush game?

46. What surreal numbers are represented by this Hackenbush game? Explain.

47. What arithmetical statement would this correspond to if this was a null Hackenbush game?

48. What do Investigation 45 through Investigation 47 tell you about addition with surreal
numbers?
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Figure 7.5: Hackenbush beginning positions with −ω − 1.
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