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Preface: Notes to the Explorer

Yes, that’s you - you’re the explorer.
“Explorer?”
Yes, explorer. And these notes are for you.
We could have addressed you as “reader,” but this is not a traditional book. Indeed, this book

cannot be read in the traditional sense. For this book is really a guide. It is a map. It is a route of
trail markers along a path through part of the world of mathematics. This book provides you, our
explorer, our heroine or hero, with a unique opportunity to explore this path - to take a surprising,
exciting, and beautiful journey along a meandering path through a mathematical continent named
the infinite. And this is a vast continent, not just one fixed, singular locale.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will not
be following rules or algorithms, nor will you be parroting what you have been dutifully shown in class
or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture followed
by dozens of exercises that closely mimic illustrative examples. Rather, after a brief introduction
to the chapter, the majority of each chapter is made up of Investigations. These investigations are
interwoven with brief surveys, narratives, or introductions for context. But the Investigations form
the heart of this book, your journey. In the form of a Socratic dialogue, the Investigations ask you to
explore. They ask you to discover the infinite. This is not a sightseeing tour, you will be the active
one here. You will see mathematics the only way it can be seen, with the eyes of the mind - your
mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling if
you are not forced to approach it in a mindless, stress-invoking, mechanical manner. In this journey you
will find the mathematical world to be quite different from the static barren landscape most textbooks
paint it to be. Mathematics is in the midst of a golden age - more mathematics is discovered each
day than in any time in its long history. Each year there are 50,000 mathematical papers and books
that are reviewed for Mathematical Reviews! Fermat’s Last Theorem, which is considered in detail in
Discovering that Art of Mathematics - Number Theory, was solved in 1993 after 350 years of intense
struggle. The 1$ Million Poincaŕe conjecture, unanswered for over 100 years, was solved by Grigori
Perleman (Russian mathematician; 1966 - ). In the time period between when these words were
written and when you read them it is quite likely that important new discoveries adjacent to the path
laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish high
school after 10 - 12 years of mathematics instruction and have no idea that mathematics is beautiful.
How can this happen? Well, they were busy learning mathematical skills, mathematical reasoning,
and mathematical applications. Arithmetical and statistical skills are useful skills everybody should
possess. Who could argue with learning to reason? And we are all aware, to some degree or another,
how mathematics shapes our technological society. But there is something more to mathematics than
its usefulness and utility. There is its beauty. And the beauty of mathematics is one of its driving
forces. As the famous Henri Poincaŕe (French mathematician; 1854 - 1912) said:
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The mathematician does not study pure mathematics because it is useful; [s]he
studies it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as both a liberal art and as a science. As a powerful science,
mathematics shapes our technological society and serves as an indispensable tool and language in
many fields. But it is not our purpose to explore these roles of mathematics here. This has been done
in many other fine, accessible books (e.g. [COM] and [TaAr]). Instead, our purpose here is to journey
down a path that values mathematics from its long tradition as a cornerstone of the liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was rescued and preserved in monasteries. Knowledge was
categorized into the classical liberal arts and mathematics made up several of the seven categories.1

During the Renaissance and the Scientific Revolution the importance of mathematics as a science
increased dramatically. Nonetheless, it also remained a central component of the liberal arts during
these periods. Indeed, mathematics has never lost its place within the liberal arts - except in the
contemporary classrooms and textbooks where the focus of attention has shifted solely to the training
of qualified mathematical scientists. If you are a student of the liberal arts or if you simply want to
study mathematics for its own sake, you should feel more at home on this exploration than in other
mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And more.
In your exploration here you will see that mathematics is a human endeavor with its own rich history
of human struggle and accomplishment. You will see many of the other arts in non-trivial roles:
art and music to name two. There is also a fair share of philosophy and history. Students in the
humanities and social sciences, you should feel at home here too.

Mathematics is broad, dynamic, and connected to every area of study in one way or another.
There are places in mathematics for those in all areas of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

It is my hope that your discoveries and explorations along this path through the infinite will help you
glimpse some of this beauty. And I hope they will help you appreciate Russell’s claim that:

. . . The true spirit of delight, the exaltation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

Finally, it is my hope that these discoveries and explorations enable you to make mathematics a real
part of your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to
be assimilated as a part of daily thought, and brought again and again before the
mind with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have served as
beacons to people who have explored the continents of mathematics throughout history.

1These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and the

trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy.
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Navigating This Book

Before you begin, it will be helpful for us to briefly describe the set-up and conventions that are
used throughout this book.

As noted in the Preface, the fundamental part of this book is the Investigations. They are
the sequence of problems that will help guide you on your active exploration of mathematics. In
each chapter the investigations are numbered sequentially. You may work on these investigation
cooperatively in groups, they may often be part of homework, selected investigations may be solved
by your teacher for the purposes of illustration, or any of these and other combinations depending on
how your teacher decides to structure your learning experiences.

If you are stuck on an investigation remember what Frederick Douglass (American slave, abo-
litionist, and writer; 1818 - 1895) told us: “If thee is no struggle, there is no progress.” Keep thinking
about it, talk to peers, or ask your teacher for help. If you want you can temporarily put it aside and
move on to the next section of the chapter. The sections are often somewhat independent.

Investigation numbers are bolded to help you identify the relationship between them.
Independent investigations are so-called to point out that the task is more significant than the

typical investigations. They may require more involved mathematical investigation, additional re-
search outside of class, or a significant writing component. They may also signify an opportunity for
class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections between
mathematics and other fields - especially the liberal arts. Whether you complete a few of the connec-
tions of your choice, all of the connections in each section, or are asked to find your own connections
is up to your teacher. But we hope that these connections will help you see how rich mathematics’
connections are to the liberal arts, the fine arts, culture, and the human experience.

Further investigations, when included are meant to continue the investigations of the area in
question to a higher level. Often the level of sophistication of these investigations will be higher.
Additionally, our guidance will be more cursory.

Within each book in this series the chapters are chosen sequentially so there is a dominant theme
and direction to the book. However, it is often the case that chapters can be used independently of
one another - both within a given book and among books in the series. So you may find your teacher
choosing chapters from a number of different books - and even including “chapters” of their own that
they have created to craft a coherent course for you. More information on chapter dependence within
single books is available online.

Certain conventions are quite important to note. Because of the central role of proof in mathe-
matics, definitions are essential. But different contexts suggest different degrees of formality. In our
text we use the following conventions regarding definitions:

• An undefined term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term that
will be defined a bit later; or an important non-technical term that may be new to the reader,
suggesting a dictionary consultation may be helpful.
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• An informal definition is italicized and bold faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context. Often
this means that a formal definition at this point would take the discussion too far afield or
be overly pedantic.

• A formal definition is bolded the first time it is used. This is a formal definition that
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a biographical name appears it is bolded and basic biographical
information is included parenthetically to provide some historical, cultural, and human connections.
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CHAPTER 1

What is Area?

The simplest schoolboy is now familiar with truths for which Archimedes would have sac-
rificed his life.

Ernest Renan (French Philosopher; 1823 - 1892)

Finding areas has been important for a long time. In ancient Egypt (ca. 5000 years ago!) dividing
up the land around the river Nile was crucial, since only the land close enough to the river to be
flooded could be used to grow crops. The Egyptians knew an astonishing amount of mathematics,
they could for example compute areas under curves.1 See Figure 1.1 for an ancient egyptian papyrus
showing area computation of triangles and area estimation of circles.

Figure 1.1. Rhind Mathematical Papyrus

What areas do we need to be able to compute today? Of course there are many small examples,
like finding the area of your living room if you want to buy a new carpet. But think also about finding
the area of land that will be flooded when a hurricane hits, or the area of the ocean effected by a big
oil spill.

1. Find two more important examples that need area computations.

Mathematicians also enjoy more abstract examples. For instance they wonder what the area is
inside Koch’s snowflake which is the result of the process started in Figure 1.2 after infinitely many
iterations.

2. Let’s remember what you have learned in school: Given a rectangle of dimensions x and y how
do you compute the area of the rectangle? See Figure 1.3.

1The advanced state of this math is confirmed by an architectural drawing even older than the Rhind Papyrus
that shows that Nilotic engineers had learned to find the area under a curve more than 5,000 years ago. See http:

//www.touregypt.net/featurestories/numbers.htm
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Figure 1.2. The first 4 iterations of Koch’s snowflake.

y

x

Figure 1.3. The dimensions of a rectangle.

3. Explain why you believe the above formula makes sense. Why do we compute area in this way?

The following investigations will help you understand how we can decide which area formulas
make sense. We would like area to have the following properties:

a) If we cut a shape into several pieces, the area of the whole shape should be the same as the
sum of the areas of the smaller pieces.

b) If two shapes are congruent then their areas should be the same. Two shapes are called con-
gruent if one can be transformed into the other by translation (sliding), rotation (turning)
or reflection (flipping).

c) The area of a square with side length 1 should be equal to 1.

4. Explain why it makes sense to require the above properties a) through c).
5. Assume that we compute the area of the reactangle in Figure 1.3 as A = x+ y. Explain why this

would not be a good choice for area computation. Use the above properties of area in your
argument.

6. Assume that we compute the area of the reactangle in Figure 1.3 as A = x2y. Explain why this
would not be a good choice for area computation. Use the above properties of area in your
argument.

7. Assume that we compute the area of the reactangle in Figure 1.3 as A = y. Explain why this
would not be a good choice for area computation. Use the above properties of area in your
argument.

8. Assume that we compute the area of the reactangle in Figure 1.3 as A = xy. Explain why
this would be a good choice for area computation. Use the above properties of area in your
argument.

Definition 1. The area of a rectangle with dimensions x and y, see Figure 1.3, is defined as A = xy.

6
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1. Geoboards and Points

Before we can handle the complicated area of an oil spill or Koch’s snowflake, we need to get
some practice with easier shapes. Geoboards are a nice tool to practice rearranging and computing
shapes. See Figure 1.4. For the following exercises you are encouraged to use a geoboard to help your

Figure 1.4. A wooden geoboard with rubber bands.

thinking. To measure area we decide on a unit square with area 1 and count how many unit squares
fit into a given shape. No equations are necessary.

9. Let’s choose the smallest square made of 4 pegs on our geoboard as our unit square. How many
1x1 unit squares would fit into the shape in Figure 1.5?

We might wonder if it matters which square we decide to use as our unit. Let’s think about that:

10. How many 2x2 squares would fit into the shape in Figure 1.5?
11. How does your choice of unit square relate to the use of different length and area measurements

in, for example, the US and in Europe?

Figure 1.5.

For the next investigations we assume that we use 1x1 unit squares to measure area. If you use
equations to compute the area, see if you can find a different way without using any equations. Or
see if you can understand why the equations you are using actually compute the desired area.

12. Compute the area of the shape in Figure 1.6(a). Explain your reasoning in detail.
13. Compute the area of the shape in Figure 1.6(b). Explain your reasoning in detail.
14. Compute the area of the shape in Figure 1.6(c). Explain your reasoning in detail.
15. Compute the area of the shape in Figure 1.6(d). Explain your reasoning in detail.
16. Compute the area of the shape in Figure 1.6(e). Explain your reasoning in detail.
17. Summarize the strategies you used in the last geoboard investigations. Do you think you can

compute the area of any shape using your techniques? Explain.

7
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(a) (b) (c) (d)

(e)

Figure 1.6. Area on Geoboards

2. Magical Shapes

Here is a puzzle for you:

18. Find the area of the large shapes in Figure 1.7 and Figure 1.8.

Figure 1.7.

Figure 1.8.

19. Compute the area of the four shapes that the large shape in Figure 1.7 consists of.
20. Compute the area of the four shapes that the large shape in Figure 1.8 consists of.

8
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21. Comparing Investigation 19 and Investigation 20, are you surprised? Why?
22. Take some tape and “draw” the shapes and their pieces on a tile floor with large tiles. Look

carefully at the situation and explain what is going on in Investigation 21.

Euclid (Greek Mathematician; fl 300 BC - ) defined a point using the following definition:

A point is that which has no part.

Euclids book The Elements contains all the basic definitions, axioms and theorems of basic ge-
ometry, which we now call Euclidian Geometry . His book is the second most read book in history!
Which one, do you think, is the first most read book?

Mathematicians think of a point as being infinitely small. That means we can’t really “draw a
point” on our paper, we just draw a small disk instead.

23. Why do you think mathematicians want a point to be infinitely small instead of just being a
small disk? Think of advantages and disadvantages of the definition.

24. Consider the shape in Figure 1.5. How many points (mathematical points, not pegs!) are inside
your shape?

25. What is the area of one (mathematical) point? Use the definition of the area of a rectangle in
your explanation.

26. Using Investigation 24 and Investigation 25, what is the area of the shape in Figure 1.5? Does
this surprise you?

27. To compute the area of a shape, do you think we can break the shape into pieces and just add
up the area of the pieces? Explain.

It seems that breaking a shape into pieces to find the area is a good idea, since the total area
stays the same if we cut a shape apart. Unfortunately we have to be careful if there are “too many
pieces that are too small”. There is whole branch of mathematics, called Measure Theory , that
deals with this kind of problems. We will learn more about this in a different chapter.

3. Archimedes’ Circles

28. Take graph paper and draw a circle of radius 4. Estimate the area, using the boxes on your graph
paper as units. Explain your strategies.

29. Compare your results from Investigation 28 with your group. How accurate is your estimation?
How can you make more accurate estimates?

30. Make more accurate estimates for the areas of the circle.
31. Can you compute the exact area of the circles using your method? Explain why or why not?

Archimedes (Greek Mathematician; c. 287 BC - c. 212 BC) had a different idea of estimating
the area of a circle with radius r = 4. He drew different shapes inside the circle of which he could
compute the area more easily.

32. If you were Archimedes, which shape would you choose? Explain.
33. Can you compute the area of the shape you chose in Investigation 32? Why or why not? (Assume

your circle has radius r = 4)

To be able to compute the area of the shape in Investigation 32 we need to get some practice in
finding areas.

You might remember some equations for area computations from former mathematics classes.
Did you just memorize them or did/do you understand why they work? Recall that we defined the
area of a rectangle with dimensions x and y as A = xy.

34. Now extend the top and the bottom edge of your rectangle and move the top of your rectangle
to the right. You have to keep the new shape between the lines. See Figure 1.9. What is the

9
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name of the new shape? Is the area of the new shape the same of different from the area of
the rectangle? Explain.

y

x

Figure 1.9.

35. Explain how to compute the area of any parallelogram.
36. Use your explanation in Investigation 35 to find the area of the parallelogram in Figure 1.10.

Check your work by computing the area of the parallelogram in a different way.

Figure 1.10. Parallelogram on a Geoboard

37. Find the area of the triangle in Figure 1.11 using the area of a parallelogram. Explain. Check
your answer using a different method.

Figure 1.11. Triangle on a Geoboard

38. Explain, how to compute the area of any triangle.
39. Using your strategy from Investigation 38, find the area of the second triangle in Figure 1.12.

Explain.

10
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1

2

11 1

Figure 1.12. Two Triangles

40. Using your strategy from Investigation 38, find the area of the first triangle in Figure 1.12. What
is different or difficult compared to the last investigation? Explain.

41. Recall the Pythagorean theorem and use it to find the area of the first triangle in Figure 1.12.

42. Independent Investigation: Look at your shape from Investigation 32. Assume
your circles has radius r = 4. Can you cut your shape into triangles? Can you use those
triangles to compute the area of your shape? If there are different ways to cut your shape
into triangles, try finding the one that is most helpful for finding the total area of your
shape.

43. Classroom Discussion: Compare the shapes and theire area estimates from Investigation 42
with your class mates. Which one do you think is the best estimate? Why? Compare also
how you cut your shapes into triangles. Is there a best way to arrange your triangles?

Archimedes inscribed regular polygons in the circle. A regular polygon consists of equal length
line segments meeting at equal angles. See Figure 1.13 for some examples.

Figure 1.13. Some Regular Polygons

44. Why are regular polygons a good choice for estimating the area of a circle? Explain.
45. Compare your shape from Investigation 32 with a regular polygon. How are they similar or

different?

11
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The apothem of a regular polygon is defined as the line segment from the center of the polygon
to the midpoint of one of its sides. See Figure 1.14.

Figure 1.14. Apothem of a Hexagon.

46. Find the length of the apothem in Figure 1.14. Assume that the length of one side of the hexagon
is 1 unit.

47. For the hexagon in Figure 1.14 compute the area using the apothem result from Investigation 46.

48. Independent Investigation: Given a circle of radius 4, use Archimedes’ method
and an inscribed hexagon to compute an estimate of the area of the circle. Now inscribe
a dodecagon into the circle by subdividing the sides of your hexagon. Estimate the area
of the circle using the area of the dodecagon.
Hint: Draw a picture including the hexagon and the dodecagon. Can you continue this
process? Compare your answer with Investigation 28.

Circles come in very different sizes, so the regular polygons can have different side lengths. To
simplify the process we want to find the area of the polygon using variables for the side length and
the apothem length. We will call the side length s and the apothem length a.

49. Label Figure 1.14 with s and a as defined above.
50. Find the area of the hexagon as in Figure 1.14 using s and a. Explain your strategy.

We now understand how to find the area of one regular polygon. Now which one do we use for
the estimation of the circle? Which one did Archimedes choose?

51. How many different polygons are there? Draw a few inside the circle and decide which one is the
best to be inscribed the circle for an area estimation. Explain.

52. Given any regular polygon with n sides of length s and apothem a find the area of the polygon.
53. Express the perimeter p of a regular polygon in terms of a and s.
54. Using Investigation 52 and Investigation 53, find the area of any regular polygon with perimeter

p and apothem a. Don’t use the side length s anymore in your final answer.

It is important to be able to estimate, but we would prefer to compute the exact area of a circle
of a given radius r.

55. If you choose inscribed regular polygons that approxiamte the circle better and better, how does
the apothem of the polygon relate to the radius of the circle? Explain.

56. If you choose inscribed regular polygons that approxiamte the circle better and better, how does
the perimeter of the polygon relate to the circumference of the circle? Explain.

57. Using Investigation 55 and Investigation 56, how can we find the area of a circle given its radius
r and its circumference?

58. The circumference of a circle of radius r can be computed as p = 2πr. See ??? for investigations
on how to develop that equation.

12
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59. Using the equation for the circumference of the circle and Investigation 57 find a general equation
for the area of a circle of radius r.

60. Using the equation for the circumference of the circle and Investigation 57 compute the area of
a circle of radius 4. Compare you result with Investigation 48.

The above approach might seem complicated but remember that this is how Archimedes thought
about circles. He was able to compute very good estimates for the area of a circle. He did, however,
not use the constant π as we do today.

The process of inscribing regular polygons with more and more sides into the circle until “there is
no space left” is a core idea in Calculus especialy in the area called Integration. We will use the idea
in a later section.

4. Cutting up the Circle to find its Area...

This section will show you a very different way of finding the area of a circle. It was found by
Leonardo Da Vinci (Italian Mathematician, Scientist and Inventor; 1452 - 1519)

Figure 1.15. A visual proof of the area of a circle of radius r.

61. Look at Figure 1.15. Why is the area of the circle the same as the area of the shape below?
62. Why are the dimensions of the shape below r and πr?
63. What is the estimated area of the shape below? How did you estimate?
64. Using Investigation 61 through Investigation 63, what is your estimate for the area of a circle

with radius r?
65. How could you change the picture to get an even better estimate for the area of a circle with

radius r?
66. Can you continue your argument and find the exact area of a circle with radius r? Explain.
67. Compare your result of Investigation 66 with Investigation 48 and Investigation 60. Do your

results agree? Why or why not?

5. Area of Fractals

Take an equilateral triangle and assume its area to be 1. Now divide each side into three equal
pieces and attach (smaller) equilateral triangles on the middle thirds. See Figure 1.16.

68. What is the area of one smaller triangle? Explain.
69. How many smaller triangles do you need to attach?

13
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Figure 1.16. The first 4 iterations of Koch’s snowflake.

Now you keep repeating the same process. Divide each line segment on the outside of the snowflake
into three equal pieces and attach (even smaller) equilateral triangles on the middles thirds.

70. What is the area of one even smaller triangle? Explain.
71. How many even smaller triangles do you need to attach?
72. Our goal is to compute the area of the Koch snowflake after infinitely many interations. Do you

think the area of Koch’s snowflake will be finite or infinite? Explain.
73. Repeating the above pattern, do you notice a pattern in the sizes of the triangles?
74. Repeating the above pattern, do you notice a pattern in the number of triangles you need to

attach in each step?

For the following computations you need to know about infinite series, especially the geometric series.
See Discovering the Art of Mathematics: The Infinite.

75. Write the area of Koch’s snowflake as an infinite series.
76. Use you knowledge about the sum of the geometric series to find the area of Koch’s snowflake.
77. Does the above result surprise you or not? Explain.

We answered our question about the area of the fractal, but what about the perimeter? Is the
perimeter of Koch’s snowflake finite or infinite? To make computations easier, let’s start with a new
construction, in which the length of each side of the original triangle is 1.

78. Explain why the area of the large triangle is now no longer equal to 1.
79. Find the perimeter of the first triangle.
80. Find the perimeter of a smaller triangle.
81. Find the perimeter of an even smaller triangle.

82. Find the perimeter of Koch’s snowflake after 2 iterations.
83. Find the perimeter of Koch’s snowflake after 3 iterations.
84. Find the perimeter of Koch’s snowflake after 4 iterations.
85. Write the perimeter of Koch’s snowflake as an infinite series.
86. Use you knowledge about the sum of the geometric series to find the perimeter of Koch’s snowflake.
87. Does the above result surprise you or not? Explain.

6. Further Investigations

F1. Watch http://www.youtube.com/watch?v=G_GBwuYuOOs as an introductionto the Mandelbrot
fractal, named after Benoit Mandelbrot (French and American Mathematician; 1924 -
2010). Do you think the fractal is beautiful? Would you call it a piece of art?

14
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F2. Do you think the area inside the Mandelbrot fractal is finite or infinite? Explain your thinking.
F3. Read at https://www.fractalus.com/kerry/articles/area/mandelbrot-area.html about

current research about the area of the Mandelbrot set. What is know about it? Does the
result surprise you?
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CHAPTER 2

Numbers, Bases and Geometric Series

Our minds are finite, and yet even in these circumstances of finitude we are surrounded by
possibilities that are infinite, and the purpose of life is to grasp as much as we can out of
that infinitude.

Alfred North Whitehead (English Mathematician and Philosopher; 1861 - 1947)

1. 0.999999 . . . and 1

Here and below when we write 0.999999 . . . we mean the infinitely repeating decimal all of whose
digits are 9. Sometimes this number is written compactly as 0.9. Because we will be doing arithmetic
and algebra with this number we find it more useful to use the notation with the ellipsis . . .

1. Classroom Discussion: How does 0.9999999 . . . compare with the number 1?

2. Use long division to precisely write 1
3 as a (possibly infinite) decimal. Express your result as an

equation: 1
3 = −−−−−.

3. Multiply both sides of your equation from Investigation 2 by 3. What does this suggest about
the value of 0.999999 . . .? Surprised?

People often object to the result in Investigation 3 because 0.999999 . . . and 1 appear so different.
But remember, the two expressions 0.999999 . . . and 1 are simply symbolic representations of real
numbers. And there many representations of numbers that are not unique. For example, we can write
the real number 3 in many ways:

3 =
6

2
3 =

21

7
3 =
√

9 3 = III 3 = 3.0 3 = 112

where III is the Roman numeral representing the number 3 and 112 represents 3 written in base two:
3 = 112 = 1× 21 + 1× 20 = 2 + 1.

4. Give several real-life examples of objects that we commonly represent in different ways.
5. In thinking about 0.999999 . . . as a representation of a number we might know more readily in a

different symbolic guise, let us use algebra to help us. Since we aren’t sure of the identity of
0.999999 . . ., let’s set x = 0.999999 . . . Determine an equation for 10x as a decimal.

6. Using your equation for 10x in the previous investigation, complete the following subtraction:

10x =

−x = 0.9999999 . . .
=

7. Solve the resulting equation in Investigation 6 for x. Surprised?

Would another proof satisfy you?

8. Compute 1÷ 9 on your calculator.
9. Compute 2÷ 9, 3÷ 9, and 4÷ 9 on your calculator.

10. What pattern do you see? Use it to predict the values your calculator provides for 5 ÷ 9, 6 ÷
9, , 7÷ 9, and 8÷ 9.
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11. Now use your calculator to compute these values. Do the values agree with your predictions?
Explain what happened.

12. What is the exact, decimal value of 1
9 .

13. Explain how you this enables you to determine the exact, decimal values of 2
9 ,

3
9 , . . .

8
9 .

14. What is the value of 1
9 + 8

9?

15. Use your decimal values to compute the decimal value of 1
9 + 8

9 .
16. What does this tell you about 0.999999 . . .?
17. Have these investigations changed your answer to Investigation 1? Explain.

Seventh Grader Makes Amazing Discovery

New discoveries and solutions to open questions in mathematics are not always made by profes-
sional mathematicians. Throughout history mathematics has also progressed in important ways
by the work of “amateurs.” Our discussion of 0.9999999 . . . provides a perfect opportunity to see
one of these examples.

As a seventh grader Anna Mills (American Writer and English Teacher; 1975 - ) was en-
couraged to make discoveries like you have above about the number 0.999999 . . . Afterwards Anna
began experimenting with related numbers on her own. When she considered the (infinitely) large
number . . . 999999.0 she was surprised when her analysis “proved” that . . . 999999.0 = −1! She
even checked that this was “true” by showing that this number . . . 999999.0 “solves” the algebraic
equations x+ 1 = 0 and 2x = x− 1, just like the number −1 does.

Encouraged by her teacher and her father to pursue this matter, Anna contacted Paul Fjel-
stad (American Mathematician; 1929 - ). Fjelstad was able to determine that Anna’s seemingly
absurd discovery that . . . 999999.0 = −1 is, in fact, true as long as one thinks of these numbers
in the settings of modular arithmetic and p-adic numbers.

You can see more about this discovery in Discovering the Art of Mathematics - The Infinite
or in Fjelstad’s paper “The repeating integer paradox” in The College Mathematics Journal , vol.
26, no. 1, January 1995, pp. 11-15.

18. What do you think about Anna Mills’ discovery?

We close this section by noting that there are different systems of numbers than the real numbers.
In particular, the surreal numbers considered in the companion book Discovering the Art of Mathe-
matics - The Infinite are a system of numbers that include infinitely many different infinitely small
non-zero numbers. And this opens Pandora’s Box right back up.

In general, most mathematicians (and engineers, scientists, etc.) work solely with the real numbers
and do not give much thought to these alternative numbers systems. But the existence of these
different, surprising worlds remain of deep interest to some.

18
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Figure 2.1. Magnifying part of the real number line.

2. The Real Numbers and the Base-Ten Number System

The set of real numbers contains all of the numbers that we work with in ordinary life:

3 271 1.5
1

3
199.99 5, 926, 481

√
2 2.998× 108 π

One way to think of the positive real numbers is the set of all number required to precisely measure
every possible length. For example, π is the length of the perimeter (aka the circumference) of a circle

of radius r = 1
2 , 2.998× 108 is the approximate number of meters light travels in a second, and

√
2 is

the length of the diagonal of a square that is 1× 1.
In everyday usage we generally represent real numbers using the base-ten system.

19. What do each of the digits in 5, 926, 481 tell us? Explain precisely.

What do the decimal digits in the base-ten system tell us? One way to think of them is as an
address of where a given number lies on a number line. Illustrated in Figure 2.1 is what one would
see if one repeatedly magnified a portion of the number line.

20. Label, in decimal form, each of the division marks in the original interval [0, 1] in Figure 2.1.
21. Express each of these labels as a single fraction of the form a−1

10 where a−1 = 0, 1, 2, . . . , 9.
22. Label, in decimal form, each of the division marks in the first magnified interval [0.5, 0.6] in

Figure 2.1.
23. Express each of these new labels as a sum of fractions of the form a−1

10 + a−2

102 where each ai =
0, 1, 2, . . . , 9.

The magnifications in Figure 2.1 help us begin to locate the important Euler-Mascheroni
constant ,1 whose decimal expansion begins 0.577215664901532, on the number line.

1It is interesting to note that this important constant has been approximated to billions of decimal digits but we
have no idea whether this number represents a single fraction (aka rational number), an irrational number, an algebraic
number, or a transcendental number.
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Figure 2.2. Divining a number magic trick.

24. Draw a figure which continues the illustration in Figure 2.1, which tells us the location on the
number line of the Euler-Mascheroni constant, through four more magnifications.

25. Why are each of the intervals divided into ten equal subintervals?
26. If you are given the decimal representation of a real number, what does each individual digit tell

you about its location in the appropriately subdivided interval? Explain.

27. Illustrate the location of 0.999999 . . . as you did above for the Euler-Mascheroni constant. Use
four or five magnifications. How hard would it be to continue magnifying?

28. Do you believe that 0.999999 . . . precisely represents a definitive, fixed, specific real number?
Explain.

The fractional expressions in Investigation 21 and Investigation 23 are called the expanded,
base-ten decimal forms of the numbers under consideration.

29. Write the Euler-Mascheroni constant, to the number of decimals shown above, in expanded,
base-ten decimal form.

30. Write 0.999999 . . . in expanded, base-ten decimal form.

3. The Base of a Mathematical Magic Trick

A magic trick based on the cards in Figure 2.2 is featured in many places, including the book
The Amazing Algebra Book by Julian Fleron and Ron Edwards. It is an old trick, appearing in The
Magician’s Own Book by George Arnold and Frank Cahill, published by Dick and Fitzgerald in 1857.

The trick is best performed in person, hopefully your teacher or some other mathemagician will
perform it for you so you can see it in action and try to figure it out. If not, there are online versions,
like the one at http://gwydir.demon.co.uk/jo/numbers/binary/cards.htm.

Observe the trick several times. After a few times, begin to collect data. Then see if you can
unlock the secret of the trick.
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. . . So you have uncovered a secret to performing the trick. But why does it work?

31. There is something special about the numbers in the upper left corners of each card, what is it?

If you were a born to a civilization with one finger on each of your two hands, or with just one
hand which had two fingers on it, you would likely count in a base-two number system. You would
also do this if you were a computer where the smallest units of information have just two states - on
and off. In such a system the “digits” are only 0 and 1 and are called bits, a portmanteau of the
words “binary” and “digit”.

The expanded, base-two representation of a number is then a number of the form:

a0 + a1 × 2 + a2 × 22 + . . .+ an × 2n

and this number is written in base-two as:

an . . . a2a1a0.

32. What is the base-ten representation of the numbers whose base two representations is 1011?
33. If this number was the secret number in the trick above, what cards would it be on?
34. What is the base-ten representation of the numbers whose base two representations is 10010?
35. If this number was the secret number in the trick above, what cards would it be on?
36. Precisely describe how the trick above is related to the base-two numeration system.
37. If you were used to counting/representing numbers in base-two, would this trick seem very magical

to you? Explain.

4. Base-Two “Decimals”

In the previous trick you got some idea what it was like to represent whole numbers in base-two.
Is there an analogue of decimals in base-two? Sure, the expanded notation now simply uses powers
of two instead of powers of ten in the denominators:

a−1
2

+
a−2
22

+
a−3
23

+ . . .

In Figure 2.3 four numbers on the real number line between 0 and 1 are represented by dots.

38. For the number represented by the right-most point, determine the expanded, base-two repre-
sentation so that the first 5 bits are correct. Explain how you know all of these bits are
correct.

39. Repeat 38 for the number represented by the point second from the right.
40. Repeat 38 for the number represented by the point third from the right.
41. Repeat 38 for the number represented by the point furthest to the left.
42. Given any point between 0 and 1 do you think that you could, with sufficient magnification and

sufficient time, determine its expanded, base-two representation to any specified (but finite)
number of bits? Explain.

43. If you can determine each number as precisely (but finitely) as desired, will the representation be
unique or is it possible to have one point to have two different expanded, base-two represen-
tations? Explain.

5. Infinite Series

Just as with base-ten decimals, one can use infinitely many bits to represent numbers in base-two.

44. Using your experience from the previous section, what number is represented by the base-two
number 0.111111 . . .? What does this remind you of?

45. Write the base-two number 0.111111 . . . in expanded notation.
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Figure 2.3. How can these numbers be expressed in expanded base-two form?

Figure 2.4. One way infinitely bisecting a square.

Because the base-two number 0.111111 . . . has infinitely many bits, its expanded notation is a sum
which continues infinitely. Such a sum is called an infinite series.

46. Figure 2.4 shows a 1× 1 square which has been repeatedly bisected. Each of the bisections cuts
the preceding square/rectangle in half. Draw in the next four subdivisions.

47. Determine and then label the areas of each of the regions in your repeatedly bisected square.
48. Use your figure to determine what number is represented in base-two by 0.111111 . . .. Does this

agree with your previous analysis of this number?

Investigation 48 is called a proof without words because once you understand what is happening
in the picture you really do have a wordless proof of the result.

49. Write the base-two number 0.010101 . . . in expanded notation.
50. By shading appropriate areas in Figure 2.4, determine what number is represented in base-two

by 0.010101 . . ..
51. Write the base-two number 0.0111111 . . . in expanded notation.
52. Determine what number is represented in base-two by 0.0111111 . . ..
53. Write the base-two number 0.001001001 . . . in expanded notation.
54. Can you shade and/or adapt and then shading Figure 2.4 to determine what number is represented

in base-two by 0.001001001 . . .?

55. Figure 2.5 shows a 1× 1 square which has been repeatedly trisected. Each of the trisection cuts
the preceding square/rectangle in thirds. Explain how you would continue the trisection.

56. Determine and then label the area of each of the regions in your repeatedly trisected square.
57. Use Figure 2.5 to determine the sum of the infinite series 1

3 + 1
9 + 1

27 + . . ., carefully explaining
how you have determined this sum.

58. Use Figure 2.5 to determine the sum of the infinite series 2
9 + 2

27 + 2
81 + . . ., carefully explaining

how you have determined this sum.
59. Use Figure 2.5 or a related figure to determine the sum of the infinite series 2

9 + 2
81 + 2

729 + . . .,
carefully explaining how you have determined this sum.
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Figure 2.5. One way infinitely trisecting a square.

6. Geometric Series

Figure 2.6 shows another way to dissect a 1 × 1 square. Can it tell us the sum of some other
infinite series?

60. Compute the area of the shape in the upper right that is shaded black.
61. Compute the area of the largest square that is shaded black.
62. If you were asked to compute the areas of the remaining shapes that were shaded black, would

computationally intensive would this be?
63. Instead of computations, can you see how shapes of successive sizes are related to each other?

I.e. how is the area of the largest shaded-black shape related to the whole area? How is the
area of the largest shaded-black square related to the area of the largest shaded-black shape?

64. Express the total area in the figure that is shaded black as an infinite series, carefully explaining
how you have found the terms in this infinite series.

65. Determine the sum of the infinite series.

The essential observation in the proof without words you just rediscovered - and a number of
those above as well - is that there is a multiplicative scale factor that relates each term in the infinite
series to the next term. Series constructed in this way are called geometric series and have the
form:

r + r2 + r3 + r4 + . . .

66. The infinite series that is the expanded notation for the base-two number 0.111111 . . ., is it a
geometric series? If so, determine the value of the scale factor r and compare it to the sum
of the infinite series.
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Figure 2.6. Dissecting a square.

67. The infinite series that is the expanded notation for the base-two number 0.010101 . . ., is it a
geometric series? If so, determine the value of the scale factor r and compare it to the sum
of the infinite series.

68. The infinite series that is the expanded notation for the base-two number 0.001001001 . . ., is it a
geometric series? If so, determine the value of the scale factor r and compare it to the sum
of the infinite series.

69. Is the series 1
3 + 1

9 + 1
27 + . . . a geometric series? If so, determine the value of the scale factor r

and compare it to the sum of the infinite series.
70. Is the series in Investigation 65 a geometric series? If so, determine the value of the scale factor

r and compare it to the sum of the infinite series.
71. On the basis of these examples, make a conjecture about the exact value of the sum of geometric

series.

Sometimes infinite series involve a single multiplicative factor m in addition to the scaling factor r.
By including them we have the general form that gives the precise definition of a geometric series.
It is any series of the form

m · r +m · r2 +m · r2 + . . . 2

2Typical definitions of the geometric series include the constant term m, so the series is m+m·r+m·r2+m·r2+. . .

If you understand one version you understand the other, just add or subtract the constant term m as appropriate.
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72. Find appropriate values for m and r to show the infinite series in Investigation 58 is a geometric
series.

73. Find appropriate values for m and r to show the infinite series in Investigation 59 is a geometric
series.

74. Find appropriate values for m and r to show the infinite series that represents the base-two
number in Investigation 51 is a geometric series.

75. On the basis of these examples, adapt your conjecture in Investigation 71 to provide an exact
value of the sum of a geometric series with multipliers. Will your formula work for geometric
series without multipliers? Explain.

It is important to note that there are limitations on the value of r for which geometric series
converge.

76. Make a geometric series with r = 2. What will be the sum of this geometric series? What does
your formula for geometric series sums predict the sum of the series will be?

77. Make a geometric series with r = −1. What will be the sum of this geometric series? What does
your formula for geometric series sums predict the sum of the series will be?

78. For the geometric series where your sum is given correctly by your formula, what is true about
the nature of their scale factors r?

79. Make a conjecture which provides a range of values of the scale factor r for which your formula
will apply.

7. Proving the Correctness of the Geometric Series Sum

Above you re-discovered, empirically, a formula for the sum of a geometric series. There are a
number of ways to prove that this result holds in general. Several methods are considered in Discov-
ering the Art of Mathematics - The Infinite. Here we outline steps for a geometric proof.

Figure 2.7 shows what appears to be a large triangle subdivided into infinitely many squares and
triangles.

Figure 2.7. Proof without words - Sum of a geometric series.

It is essential to understand what insures the larger triangle is a triangle.

80. In your own words, what is the slope of a line?
81. In terms of the variable r, what is the slope of the line segment forming the hypotenuse of the

triangle above the first square on the far left?
82. In terms of the variable r, what is the slope of the line segment forming the hypotenuse of the

triangle above the second square from the far left?
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83. Do these two slopes agree?
84. In terms of the variable r, what is the slope of the line segment forming the hypotenuse of the

triangle above the third square from the far left?
85. Does this slope agree with the slopes from the earlier investigations?
86. In terms of the variable r, what is the slope of the line segment forming the hypotenuse of the

triangle above the square whose dimensions are rn × rn?
87. Does this slope agree with the other slopes you have determined?
88. Explain why this shows that the hypotenuses, taken together - all infinitely many of them - form

a single straight line.
89. Explain what it means for two triangles to be similar.
90. If two triangles are similar, what does this tell you about the ratios of corresponding sides?

Explain, intuitively, why this result is so.
91. Explain why the large triangle, whose height is 1 and whose base is r+r2 +r3 +r4 + . . ., is similar

to the shaded triangle sitting on top of the r × r square.
92. Combine the last two results to proves the formula for the sum of a geometric series.
93. We have noted previously that the sum formula is valid only for specific values of the scale factor

r. For what values of r will this proof without words work? How does this compare with
earlier observations about limitations on the size of r?
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CHAPTER 3

A Taste of Measure Theory

It’s not denial. I’m just very selective about what I accept as reality.
Calvin and Hobbes (American Cartoonist Bill Watterson; 1958 - )

1. Introduction

Length is one of the most important concepts in calculus (and mathematics), and we generally
take the definition of length for granted. However, there are many sets of numbers that are important
in calculus and mathematics for which we want to have a way of quantifying how much space they
take up even though they may be too spread out for the word length to be appropriate. Because some
of these sets of numbers have lots of “holes” in them, mathematicians use the term measure for the
generalized notion of length we will be discussing in this chapter.

Need more blah here.

1. What is the measure (or length) of the closed interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}? (See
Figure 3.1.) Explain.

Figure 3.1. The closed Unit Interval, [0,1]

2. What is the measure (or length) of the open interval (0, 1) = {x ∈ R : 0 < x < 1}? (See
Figure 3.2.) Explain.

Figure 3.2. The open Unit Interval, (0,1)

3. What is the total measure (or length) of the set A = [0, 2] ∪ (3, 6) = {x ∈ R : 0 ≤ x ≤ 2 or 3 <
x < 6}? (See Figure 3.3.) Explain.

4. What should be the measure of the single point set P = {0}? Explain.
5. What should be the measure of the two point set P = {0, 1}? Explain.
6. Is your answer to Investigation 5 consistent with your answers to Investigations 1-2? Explain.
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Figure 3.3. The set [0, 1] ∪ (3, 6)

7. Use the lengths of the intervals [2, 10], (2, 5), (5, 9) and (9, 10) to determine what should be the
measure of the four-point set {2, 5, 9, 10}. Explain.

8. Use the ideas from Investigations 1, 2, 5 and 7 to explain why any finite set of numbers has
measure zero.

In the above Investigations it was probably fairly easy to determine what was the measure of
each of the sets. However, in some cases is isn’t clear what the measure should be. In the next set of
questions we will look at two sets of numbers that are constructed in similar ways but have, perhaps
surprisingly, very different measures.

2. Cantor Sets

One of the most important, and interesting, types of sets in all of mathematics are Cantor Sets.
Although this type of set is named after Georg Cantor (German Mathematician; 1845 - 1918), it
was first described by Henry John Stephen Smith (Irish Mathematician; 1826 - 1883) in an 1875
paper on integration. We will start with the most well known Cantor Set, the Cantor Ternary Set.

2.1. The Cantor Ternary Set. The Cantor Ternary Set is a subset of the closed unit
interval [0, 1] and we will construct it in an infinite number of stages. At each stage we will remove
more and more from the interval [0, 1] and the Cantor Ternary Set is what will be left at the end of
this infinite process. You might think this infinite process might mean we can never really specify
what is in the Cantor Ternary Set, but we can make the description precise enough so that we can be
very clear about what is in the Cantor Ternary Set and what is not.

In this section we will be using geometric series, so your instructor should provide you with some
information about working with infinite geometric series. One good reference is from our Discovering
the Art of Mathematics project; Chapter 3 in Discovering the Art of the Infinite covers geometric
series in sufficient detail. In particular, you will need to be able to recognize whether an infinite series
is geometric, under what conditions an infinite geometric series will converge and how to determine
the sum whenever the series does converge.

Stage 0:
We start with the unit interval [0, 1], which we will denote by C30 .

Note on the notation: The 3 in the notation is used because the 3 has an important role
in constructing the set and this will distinguish this set from other Cantor Sets.

Figure 3.4. Stage 0: The interval [0, 1]

Stage 1:
We then remove the open interval ( 1

3 ,
2
3 ); that is, we remove all numbers that strictly bigger than

1
3 and strictly less than 2

3 but leaving the numbers 1
3 and 2

3 . We denote this stage by C31 :
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Figure 3.5. Stage 1:
[
0, 13
]
∪
[
2
3 , 1
]

Stage 2:
The next stage, denoted by C32 , is obtained by removing the open intervals ( 1

9 ,
2
9 ) and ( 7

9 ,
8
9 ), again

leaving the end points 1
9 ,

2
9 ,

7
9 and 8

9 :

Figure 3.6. Stage 2:
[
0, 19
]
∪
[
2
9 ,

1
3

]
∪
[
2
3
7
9

]
∪
[
8
9 , 1
]

Stage 3:
For the next stage, C33 , we remove the open intervals ( 1

27 ,
2
27 ), ( 7

27 ,
8
27 ), ( 19

27 ,
20
27 ) and ( 25

27 ,
26
27 ), again

leaving the end points 1
27 ,

2
27 ,

7
27 ,

8
27 ,

19
27 ,

20
27 ,

25
27 and 26

27 :

Figure 3.7. Stage 3:
[
0, 1

27 ] ∪
[

2
27 ,

1
9

]
∪
[
2
9 ,

7
27

]
∪
[

8
27 ,

1
3

]
∪
[
2
3 ,

19
27

]
∪
[
20
27 ,

7
9

]
∪
[
8
9 ,

25
27

]
∪
[
26
27 , 1

]
9. What patterns do you observe in the construction of stages C31 - C33? Explain.

10. What are the open intervals that will be removed in stage C34?
11. What are the closed intervals that will remain?
12. In your notebook draw a picture of C34 .
13. What are the open intervals that will be removed in stage C35?
14. What are the closed intervals that will remain?
15. In your notebook draw a picture of stage C35 .
16. Explain why we can construct the sets C3n value of n.

The Cantor Ternary Set is what remains after we let n→∞. More formally, the Cantor Ternary

Set, C3, is defined by C3 =

∞⋂
n=1

C3n.

17. Are there any numbers in C3? That is, are there any numbers that are in C3n for every n? Explain.
18. Based on your answer to Investigation 17 does C3 have finitely many or infinitely many points?

Explain.
19. What is happening to the lengths of the intervals in C3n for each n? Explain.
20. Based on your answers to Investigations 16 and 19 Does C3 contain any interval of positive

length?
21. Based on your answer to Investigation 20 what do you believe to be the measure of C3. Explain.
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We can use the same strategy as you used in Investigation 8 along with tools for evaluating infinite
geometric series (see Chapter 3 in Discovering the Art of the Infinite for more details) to actually
determine the measure of C3.

22. What is the length of the interval removed in constructing C31?
23. What is the total length of the intervals removed in constructing C32 from C31? (Note that your

answer should not include the length you identified in Investigation 22.)
24. What is the total length of the intervals removed in constructing C33 from C32? (Note that your

answer should not include the lengths you identified in Investigations 22-23.)
25. What is the total length of the intervals removed in constructing C34 from C33? (Note that your

answer should not include the lengths you identified in Investigations 22-24.)
26. What is the total length of the intervals removed in constructing C35 from C34? (Note that your

answer should not include the lengths you identified in Investigations 22-25.)
27. What patterns do you notice in your answers to Investigations 22-26? Explain.
28. Use your answer to Investigation 27 to complete the table in Table 3.1.

Stage Total Length Removed

C31 1
3

C32

C33

C34

C35

C36

C37

C38

...
...

C3n

Table 3.1. Total Length of Intervals Removed in Constructing C3n for n = 1, 2, 3, . . . , 8

29. Use your answer for Investigation 28 to write down an infinite series that represents the total
length of open intervals that were removed in constructing C3.

30. Use the methods for evaluating infinite geometric series to determine the sum in Investigation 29.
31. Using your answers to Investigations 1 and 30 to determine the measure of the Cantor Ternary

Set, C3.
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32. In light of your answer to Investigation 18, are you surprised by your answer to Investigation 31?
Explain.

One surprising aspect of the Cantor Ternary Set that makes the set important, is that there are
exactly as many numbers in C3 as there are in the interval [0, 1]. That is, we can match each number
in C3 with exactly one number in [0, 1] and vice versa. The proof of this fact is beyond the scope of
this book, so we will accept this fact without proof.

33. Explain why the above result makes your answer to Investigation 31 even more surprising.

2.2. The Cantor Quinary Set. We now consider another Cantor Set the Cantor Quinary Set,
C5. This set is constructed a manner similar to that of C3, except this time in each stage we partition
every interval into fifths and then remove the middle fifth (this is why our notation for the Cantor
Ternary Set has a superscript 5).

Stage 0:
We start with the unit interval [0, 1], which we will denote by C50 :

Figure 3.8. Stage 0: The interval [0, 1]

Stage 1:
We then remove the open interval ( 2

5 ,
3
5 ); that is, we remove all numbers that strictly bigger than

2
5 and strictly less than 3

5 but leaving the numbers 2
5 and 3

5 . We denote this stage by C51 :

Figure 3.9. Stage 1:
[
0, 25
]
∪
[
3
5 , 1
]

Stage 2:
The next stage, denoted by C52 , is obtained by removing the open intervals ( 2

25 ,
4
25 ) and ( 19

25 ,
21
25 ),

again leaving the end points 2
25 ,

4
25 ,

19
25 and 21

25 :

Figure 3.10. Stage 2:
[
0, 4

25

]
∪
[

6
25 ,

2
5

]
∪
[
3
5
19
25

]
∪
[
21
25 , 1

]
Stage 3:
For the next stage, C53 , we remove the open intervals ( 8

125 ,
12
125 ), ( 38

125 ,
42
125 ), ( 83

125 ,
87
125 ) and ( 113

125 ,
117
125 ),

again leaving the end points 8
125 ,

12
125 ,

38
125 ,

42
125 ,

83
125 ,

87
125 ,

113
125 and 117

125 :

34. What patterns do you observe in the construction of stages C51 - C53? Explain.
35. What are the open intervals that will be removed in stage C54?
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Figure 3.11. Stage 3:
[
0, 8

125 ]∪
[

12
125 ,

4
25

]
∪
[

6
25 ,

38
125

]
∪
[

42
125 ,

2
5

]
∪
[
3
5 ,

83
125

]
∪
[

87
125 ,

19
25

]
∪[

21
25 ,

113
125

]
∪
[
117
125 , 1

]
36. What are the closed intervals that will remain?
37. In your notebook draw a picture of C54 .
38. What are the open intervals that will be removed in stage C55?
39. What are the closed intervals that will remain?
40. In your notebook draw a picture of stage C55 .
41. Explain why we can continue this process for each value of n.

The Cantor Quinary Set is what remains after we let n → ∞. That is, the Cantor Quinary

Set, C5, is defined by C5 =

∞⋂
n=1

C5n.

42. Are there any numbers in C5? That is, are there any numbers that are in C5n for every n? Explain.
43. Based on your answer to Investigation 42 does C5 have finitely many or infinitely many points?

Explain.
44. What is happening to the lengths of the intervals in C5n for each n? Explain.
45. Based on your answers to Investigations 41 and 44 Does C5 contain any interval of positive

length?
46. Based on your answer to Investigation 45 what do you believe to be the measure of C5. Explain.

We can use the same strategy as you used in Investigation 8 along with tools for evaluating infinite
geometric series (see Chapter 3 in Discovering the Art of the Infinite for more details) to actually
determine the measure of C5.

47. What is the length of the interval removed in constructing C51?
48. What is the total length of the intervals removed in constructing C52 from C51? (Note that your

answer should not include the length you identified in Investigation 47.)
49. What is the total length of the intervals removed in constructing C53 from C52? (Note that your

answer should not include the lengths you identified in Investigations 47-48.)
50. What is the total length of the intervals removed in constructing C54 from C53? (Note that your

answer should not include the lengths you identified in Investigations 47-49.)
51. What is the total length of the intervals removed in constructing C55 from C54? (Note that your

answer should not include the lengths you identified in Investigations 47-50.)
52. What patterns do you notice in your answers to Investigations 47-51? Explain.
53. Use your answer to Investigation 52 to complete the table in Table 3.2.

54. Use your answer for Investigation 53 to write down an infinite series that represents the total
length of open intervals that were removed in constructing C5.

55. Use the methods for evaluating infinite geometric series to evaluate the sum in Investigation 54.
56. Using your answers to Investigations 1 and 55 to determine the measure of the Cantor Quinary

Set, C5.
57. In light of your answers to Investigation 43 and Investigation 31, are you surprised by your

answer to Investigation 56? Explain.
58. Using the ideas from this section, describe some other Cantor sets that can be created and

determine their measure.
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Stage Total Length Removed

C51 1
5

C52

C53

C54

C55

C56

C57

C58

...
...

C5n

Table 3.2. Total Length of Intervals Removed in Constructing C5n for n = 1, 2, 3, . . . , 8
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CHAPTER 4

String Art

Not being able to touch is sometimes as interesting as being able to touch.
Andy Goldsworthy (British Sculptor and Photographer; 1956 - )

1. What is String Art?

Look at Andy Goldsworthy’s pieces of art: “Woven Branch Circular Arch”, Figure 4.1, and
“Poured Icicles”, Figure 4.2.

Figure 4.1. Woven Branch Circular Arch

1. Which geometric figure does describe best the shape inside the branches in each picture?

It seems amazing that we can take straight pieces of wood and create a round shape with it. How
is that possible? And how can we know how to attach the pieces of wood to make this possible? Can
we create any curved shape like this? We will start our investigations by drawing a piece of string art
that resembles Goldsworthy’s.

2. In Figure 4.3 pick a number on the left vertical number line, say 2, and its reciprocal 1
2 on the

right vertical number line. Connect the two with a line segment.
3. Choose different numbers on the left number line and their reciprocals on the right number line

and connect them.
4. Choose numbers that are fractions on the left number line and procede in the same way.
5. Choose negative numbers on the left number line and procede in the same way.
6. Does your diagram resemble Goldsworthy’s piece of art? How is it the same and how is it different?
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Figure 4.2. Poured Icicles

7. Repeat the same construction (with numbers being connected to their reciprocals) but on a grid
where you have placed the two vertical axes closer together or further apart from each other.

8. How did the change in distance between the vertical lines effect your piece of string art?
9. Imagine making another diagram where you have again changed the distance between the vertical

axes, this time in the opposite direction than you did above. What would the new diagram
look like?

10. Use your observations to help you create a diagram of a circle using the same construction
technique, describing how you determined the placement of the vertical axes.

In Figure 4.4 through Figure 4.6 there are a number of other pieces of artwork that resemble
Goldsworthy’s and those you have just created. Art of this type is usually called “String Art” or
“Curve Stitching” because they are most often created using string or yarn.

The smooth, one-dimensional shapes that our eyes discern in string art - like the circles and
ellipses above - are what mathematicians call curves.

11. Draw pictures of the curves your eyes discern in the string art in Figure 4.4 through Figure 4.6.
12. Do the curves discerned by your eye in a piece of string art actually exist as part of the artwork?

Explain in detail.
13. Describe in as much detail as possible how the line segments that make up a piece of string art

“touch” the curve in all the above examples of string art. (Depending on your answer to the
previous investigation, you may want to actually draw in the curve to make it part of the
string art.)

2. Tangent Lines

Mathematicians call lines that touch curves as they do in string art tangent lines. When a curve is
touched by a family of tangent lines as in string art the curve is called an envelope as it is enveloped
by these tangent lines.
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4

1

0 0

1

2

3

4

2

3

Figure 4.3. Draw Goldsworthy’s Piece of Art

We want to create another example of string art, but this time we start with the curve we want
to see created.

14. Draw a closed curve on a piece of paper and try drawing some of the tangent lines you would need
to envelop the curve as if you were making string art. It this easy or complicated? Explain
why.
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Figure 4.4. Simple Example of String Art

Figure 4.5. Chair with String Art

Compare your curve and tangent lines with those of a few peers. Pay particular attention to the
tangent lines. Compare your works to the string art pieces we’ve seen.

15. Are you all in agreement that the lines that have been drawn are in fact tangent lines?
16. Describe in as much detail as possible how the line segments “touch” the curve in all of the

examples of string art.
17. What is it about the tangent lines that are so useful in describing/representing this curve?
18. For any point on your curve, is the tangent line unique or can there be more than one tangent

line at this point? You must justify your position. If your position is that the tangent line
is unique you must explain carefully why it must be so. If your position is that it need not
be unique, you must find an example of a curve and a point where the tangent line is not
unique.

19. When a tangent line is created, how many times does it generally touch/intersect the curve? Is
this a hard and fast rule, or are there exceptions? Does it matter if you are looking nearby the
point in question versus looking along the entire length of the line? If there are exceptions,
describe them and their nature, perhaps via examples.
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Figure 4.6. String Art on the Inside of a Curve

20. How would you determine how many tangent lines to use to make string art which represents the
curve? If there is a general process at work here, describe it.

21. For a given collection of tangent lines, is there a unique curve that they envelop or can they
envelop different curves? Again, justify your answer fully by providing an example if there
are more than one curves enveloped by a set of tangent lines.

Tangent lines are a fundamental part of calculus. In fact, tangent lines are the essential object
that gives rise to differential calculus - one of the two “halves” of calculus.

One of the reasons that tangent lines are so important is because they have so many different
interpretations and so many different applications. So far you have investigated tangent lines without
a very precise definition. And you have done so in a visual-spatial way. We are now going to switch
to a somewhat different representation where we can give you a more precise definition and help you
develop a more robust conception of tangent lines.

When you travel along a curve, the tangent line to the curve at a given point is the line in the
direction you are heading when you reach the point in question.

You can think of yourself strapped tightly into the seat of a roller coaster, the roller coaster’s
track the curve in question. The tangent line at any point is the direction you are facing when you
reach the point in question.

A useful example is a perfect circle, whose tangents were studied already by Euclid in his Elements

almost 2,500 years ago.1 Several tangent lines to a circle are shown in Figure 4.7.

22. Have you ever traveled along a perfectly circular path? Describe when and how the tangent lines
shown correlate with the notion of tangent line as a direction described above.

23. For each tangent line in Figure 4.7 there is a normal line from the center of the circle. What is
the relationship between each of these normal lines and the tangent line it intersects on the
circle?

24. How do the normal lines help you find the tangent lines to the circle?
25. Why must these be the correct tangent lines to the circle?

Now that you have thought about tangents as directions along the circle, it is time to experiment
with more general curves.

1E.g. in Book III, Definition 2 and Propositions 17 - 19.
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Figure 4.7. Tangent and normal lines to a circle.

Group Activity In groups of 4 - 8 students, use sidewalk chalk to draw a large, closed curve
for each group. (The curves should take up an area at least 6’ by 6’.) Have one student walk along
the curve, describing how their direction changes as they travel. Once comfortable with this, begin
drawing tangent lines at many different points along the curve. It helps to have other students with
yardsticks helping to align the tangent lines. Be careful about the placement of your feet, where your
line of sight is, etc. (If you were very, very small, riding a unicycle, with a Pinochio-like nose pointed
straight ahead of you, you would not need to worry quite so much about some of these larger scale
issues.)

26. Return to Investigation 16 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.

27. Return to Investigation 17 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.

28. Return to Investigation 18 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.

29. Return to Investigation 19 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.

30. Return to Investigation 20 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.

31. Return to Investigation 21 and revise, as needed, what you had there in light of this new bodily
kinesthetic experience with tangent lines.
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3. Slopes of Tangent Lines

Let’s say we want the curve to be the graph of a parabola y = x2, see Figure 4.8.

Figure 4.8. Graph of the Parabola y = x2.

x estimated slope
-4
-3
-2
-1
0
1
2
3
4

32. Estimate the slope of the graph of y = x2 at different x-values and fill in table 3.
33. Compare the values in the slope column with your peers and see if you can agree on values that

show a pattern. Can you for instance predict the slope at x = 20 without having to draw a
huge graph?

34. Write the estimated slope as a function y =? using the pattern you found.

35. Independent Investigation: Using other graphs, like y = x3, y = x4, and y = x5

try to find a pattern for the slope function. Our goal right now is to predict the slope
function without having to graph and estimate anything.
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4. Derivatives

Mathematicians call the slope function the derivative of a function. The concept of derivatives is
one of the key concepts in calculus. Is it now believed that the concept was developed independently
by Isaac Newton (English Mathematician and Physicist; 1642 - 1727) and Gottfried Leibniz
(German Mathematician and Philosopher; 1646 - 1716) but in their time Newton accused Leibniz
of plagiarism. They both had different approaches in developing derivatives, Newton coming from a
applied physics perspective and Leibniz from a more mathematically formal standpoint.

Now that we found the derivative of our function y = x2, we can get the slope at any point we
want. How can we use this to create a piece of string art that shows the parabola?

We will draw our string art on GeoGebra, which you can download for free at www.geogebra.org.

36. In GeoGebra, draw two lines T1 : y = 8x− 16 and T2 : y = −8x− 16 by typing the equations in
the input field at the bottom of the screen.

37. Find the slope of the parabola y = x2 at x = 1 and find the equation of the tangent line that
goes through the point (1, 1).

38. Where does this tangent line intersect the lines T1 and T2?
39. Draw you first “string” by connecting the intersection points.
40. Can you see which other tangent line you can draw with the data you have computed so far? Use

symmetry!
41. Continue to choose different x-values, find the tangent lines, intersection points and draw more

strings.
42. After how many strings can you clearly see the parabola?
43. What was hard and what was easy about drawing the strings?

If we want to create more intricate examples of string art with different curves we need to be able
to find derivatives of more complicated function. You have discovered how to take the derivative of
powers of x but there are many other functions we might want to take the derivative of. Fortunately
the computer can help us find the derivatives.

44. In GeoGebra type Derivative[x2, x] in the Input field at the bottom of the window. We have to
write the extra x in the command, because GeoGebra needs to know the name of the variable.
How does GeoGebra show you the derivative?

45. Draw also the function y = x2 by typing the equation in the Input field at the bottom of the
window.

46. Does it make sense to you that the graph of the derivative y = x2 is not tangent to the graph of
y = x2? Explain in detail. N ow try to take derivatives of more complicated functions like
y = 7x2 − 3x5 − 36x+ 6.

Let’s look at a different way to create a parabola-like shape.

47. In GeoGebra, draw line segments between (0, 0) and (7, 7) and between (0, 0) and (−7, 7). Now
choose points on your line segments dividing them into equal pieces. Each line segment should
be divided into the same number of pieces (but you can choose how many). Label the points
on the right line segment starting with the label 0 at (7, 7). Label all points down to (and
including) (0, 0) with 1, 2, 3, . . . . Now start on the left line segment with the label 1 at (−1, 1)
and continue labeling to (−6, 6) with 2, 3 . . . . Now connect the labels 1 and 1 with a line
segment, then the labels 2 and 2, etc. What do you see?

48. We want to convince ourselves that this piece of string art really shows a parabola. Find the
parabola that best matches your piece of string art. Recall that a parabola that is symmetric
to the y-axis has the general form y = ax2 + b. Explain how you found your best match.
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49. Show that all the line segments in your picture are actually tangent lines of your best matching
parabola. Explain your strategies. If the line segments are not tangent lines, find an even
better matching parabola and try again.

5. Functions and Algebraic Curves

Looking back at our circles and ellipses from the beginning of the chapter, see Figure 4.3, we
notice that the tangent lines are not as equally spaced as in our last parabola example. Can we find
a better solution?

50. Draw a circle with radius 2 in GeoGebra. Looking at the algebra window in GeoGebra, what is
the equation of this circle?

51. Using right triangles in your argument, why does it makes sense that this equation will give us a
circle? See Figure 4.9.

2

2

2
x

y

Figure 4.9. Circle of Radius 2

52. Now try taking the derivative of your circle equation using GeoGebra. What do you notice?

The problem with the derivative arises, because the circle is not a function. Do you remember
what a function is? Here is one definition: A function is a relation that uniquely associates members
of one set (the input) with members of another set (the output).

53. If you describe the parabola {(x, y) | y = x2} with a function, what do you think would be the
input set and what would be the output set?

54. If you describe the circle {(x, y) | x2 + y2 = 1} with a function, what do you think would be the
input set and what would be the output set?

55. Using the above definition, explain why the parabola is the graph of a function, but the circle is
not.

56. You might remember from high school the vertical line test: A relation is a function if there are
no vertical lines that intersect the graph at more than one point. Explain why the vertical
line test really tests if a relation is a function or not.
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57. Try splitting the circle into pieces that you can describe with functions. Hint: Solve the circle
equation for y.

58. Now use GeoGebra to find the derivative of the pieces of the circle. Explain why the graph of the
derivative makes sense to you by looking at the slope of tangent lines of the circle pieces.

Let’s see if we fully understand how the derivative works (without using GeoGebra this time).
For the graph of a function in Figure 4.10, draw the graph of the derivative in the empty coordinate
system.

Figure 4.10. Test your Derivative Skills!

Unfortunately, a lot of curves, like the circle or the one in Figure 4.11, do not arise as graphs of
functions. In fact, most “interesting” curves do not. We understand how to take derivatives and draw
tangent lines by hand for some functions, but for the more complicated curves we need the help of
the computer. In GeoGebra find the Tangents tool.

59. In GeoGebra draw the circle x2 + y2 = 4.
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Figure 4.11. Cardioid in String Art

60. Now draw a point that is not on the circle and use the Tangents tool by clicking the point and
then the circle. Explain what you get.

61. Now draw a point that is on the circle and use the Tangents tool by clicking the point and then
the circle. Explain what you get.

We were originally asking the question if we can create a piece of string art using GeoGebra that
allows equal spacing of the tangent lines, similar to our second parabola string art. The question is
which kind of frame we use. A frame is any shape in the plane that we use to attach our strings to.
In the parabola example we used two line segments, the cardioid in Figure 4.11 uses a circle and in
Figure 4.4 and Figure 4.5 a triangle and an ellipse-like curve are being used as frames.

62. Independent Investigation: Find the best frame for the circle x2 + y2 = 4 using
GeoGebra. This means you are trying to find a shape with a nice patterns of attaching the
strings (tangent lines) to it so that the resulting curve is exactly the circle x2 + y2 = 4.

63. Classroom Discussion: Compare the frames for the circle x2 + y2 = 4 and decide which one is
the best.

64. Now look at the curve x + 2xy − 54x + 216x + y − 54y = 243 in GeoGebra and create some
tangents using the Tangents tool.

65. Type other equations that involve polynomials in x and y. Mathematicians call these curves
algebraic curves. Play with the tangents tool and your curve. Explain what you observe.
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6. Creating String Art

Here is a list of some beautiful algebraic curves in the plane:

• Rose Curve : (x2 + y2)3 = 4x2y2

• Hyperbola: x2/a2 − y2/b2 = 1, choose a and b
• Nephroid: (x2 + y2 − 4a2)3 = 108a4y2, choose a
• Lemniscate x4 = x2 − y2
• Folium of Descartes x3 + y3 − 3axy = 0, choose a
• Serpentine Curve x2y + a2y − abx = 0, choose a and b
• Trisectrix of Maclaurin 2x(x2 + y2) = a(3x2 − y2), choose a
• Ambersand Curve (y2 − x2)(x− 1)(2x− 3) = 4(x2 + y2 − 2x)2

• Bean Curve x4 + x2y2 + y4 = x(x2 + y2)
• Bicuspid Curve (x2 − a2)(x− a)2 + (y2 − a2)2 = 0, choose a
• Three-leaved Clover x4 + 2x2y2 + y4 − x3 + 3xy2 = 0
• Deltoid Curve (x2 + y2)2 + 18a2(x2 + y2)− 27a4 = 8a(x3 − 3xy2), choose a
• Devil’s Curve y2(y2a2) = x2(x2b2), choose a and b
• Hippopede (x2 + y2)2 = cx2 + dy2, choose c and d
• Limacon (x2 + y2 − ax)2 = b2(x2 + y2), choose a and b
• Astroid (x2 + y2 − 1)3 + 27x2y2 = 0
• Butterfly Curve x6 + y6 = x2

Of course, this is a just a small list to give you some ideas. There are an unlimited number of
others. Two particularly useful libraries of curves are the National Curve Bank available at http:

//curvebank.calstatela.edu/index/index.htm and the Famous Curve Index available at http:

//www-history.mcs.st-and.ac.uk/Curves/Curves.html.

66. Independent Investigation: Find the graph of a function or an algebraic curve
that you really like and use GeoGebra to make your own piece of string art. You don’t
need to just take two lines to “attach” your strings. You can use a box or circle or
anything you want. Be creative! Did you use equal spacing on your line segments or
not?

67. Independent Investigation: Take your above curve and materials, like wood,
nails and string, or paper, thread and a needle to actually make your piece of string art.
Be creative!

6.1. Open Question. Is it always possible to find a frame of line segments for an algebraic
curve so that the tangent lines intercept the line segments with equal spacing? Or at least in a nice
pattern?
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7. Further Investigations

7.1. Parametrized Curves. There is yet another way how we can describe curves, by using a
parametrization. Here is an example:

c : t→ (cos(t), sin(t)), 0 ≤ t ≤ 2π.

68. Consider the parametrized curve above. Plug in different values for t and plot the resulting points
in the x, y plane. Use a calculator! What do you get?

69. Type Curve[cos(t), sin(t), t, 0, 2 pi] into the Input line of GeoGebra. Describe what you see.
70. What happens when you change the last value in your input to 1 pi or 0.5 pi?
71. Explain why some people like to think of the parameter t as time.
72. Now change the parametrization to

c : t→ (4 cos(t), 2 sin(t)), 0 ≤ t ≤ 2π.

Which shape do you get?

73. Independent Investigation: Find your favorite parametrized curve and create
your piece of string art using GeoGebra and real materials.

7.2. 3-dimensional String Art. We can also use string to create surfaces in 3 dimensions. The
surfaces we can get this way are called Ruled Surfaces. See Figure 4.12 and Figure 4.13.

Figure 4.12. Catenoid in Cylinder

74. Independent Investigation: Create your own 3-dimensional piece of string art.

47



DRAFT c© 2014 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 4.13. Naum Gabo: Linear Construction in Space No. 2
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8. Connections

8.1. Newton’s Method and Fractals. Tangent lines have many practical uses (besides creat-
ing beautiful string art!). Newton’s method, for instance, uses tangent lines to find the points where
the graph of a function crosses the x-axis (the so called zeros or roots of a function).

Newton’s method helps locate roots by successive approximation , starting at a point and
applying the method to get closer and closer to a root.

The begins by picking a starting value, also called a seed. It is denoted by x0. The method is
then as follows:

1. From the current value move vertically up or down until you intersect the graph of the
function.

2. Draw the tangent line to the function at the point you found in the previous step.
3. Follow the tangent line until it intersects the the x-axis. This is your next value, also known

as the next iterate .

This process is illustrated by the graphical image in Figure 4.14.

Figure 4.14. One stage in Newton’s method.

Once you have completed one step in Newton’s method you can simply begin again from the next
value. And then you can do this again, and again, and . . . The process of repeatedly applying a rule
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or function to the previous output like this is called iteration Starting with a specific seed value the
sequence of outputs is called the orbit of the rule/function for this seed value.

75. Explain, in your own words, why/how the mathematical labels on the objects in Figure 4.14
correctly correspond to the steps in the algorithm.

Your task is to investigate Newton’s method applied to the function f(x) = x3−3x2−x+3 which
is pictured in Figure 4.15.

Figure 4.15. Graph of the function f(x) = x3 − 3x2 − x+ 3.

76. Pick a seed value x0 which is on the far left of the x-axis, to the left of the root at x = −1.
Apply Newton’s method to find x1, drawing all of the requisite geometric information on
your graph.

77. Apply Newton’s method again to find x2.
78. Apply Newton’s method again to find x3.
79. Describe the orbit for your seed value, illustrating this orbit on your graph.
80. Now pick a new seed value around x = −0.5. Iterate Newton’s method several times.
81. Describe the orbit for this new seed value, illustrating this orbit on your graph.
82. Repeat Investigation 80 and Investigation 81 for another seed value x0 < −0.2.
83. Repeat Investigation 80 and Investigation 81 for another seed value x0 < −0.2.
84. Repeat Investigation 80 and Investigation 81 for another seed value x0 < −0.2.
85. Can you make a conjecture about the orbits for all seed values x0 < −0.2.? Explain.

Big Task Now begin investigating the behavior of Newton’s method for seed values along the
whole range of inputs. To appropriately keep track of the different orbits you should have a single
data sheet where you record the behavior of the orbits. On your data sheet color the root at
x = −1 green, the root at x = 1 red, and the root at x = 3 blue. Each time you find a seed value
whose orbit converges to the root at x = −1, color that seed value green. Similarly, color the
other seed values the appropriate color for the root they converge to.

You should make conjectures which predict the orbits of Newton’s method for as large of a
collection of seed values that you can.

All of your conjectures should be supported by reasoning/explanations that support your
conjectures.
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Mathematicians use more than just real numbers, they also work with complex numbers. When
you apply Newton’s method to complex functions your fractal has two dimensions, like Figure 4.16.

Figure 4.16. Newton Fractal for the Complex Polynomial z3 − 3z2 − z + 3

86. Compare your fractal for the function f : y = x3 − 3x2 − x + 3 with the fractal for the complex
function z3 − 3z2 − z + 3 in Figure 4.16. How are they the same and how are they different?

87. Go to http://aleph0.clarku.edu/~djoyce/newton/newtongen.html and create images for dif-
ferent complex polynomials. Do you think they are beautiful?

8.2. Caustic Curves. In Figure 4.17 you can see beams of light shining through a glass of water.
When the light beams are reflected or refracted by the glass and the water, we can see the curves that
is tangent to the beams. This curve is called a caustic curve .

Figure 4.17. Caustic Curve

88. How are caustic curves similar to string art?
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Figure 4.18. Parabola for parabolic reflector investigations.

8.3. Parabolic Reflectors. One of the reasons calculus is so important, and one of the reasons
it was invented, is the enormous number of real-world applications it has. One beautiful illustration
is the role of tangent lines in parabolic reflectors.

89. Draw a horizontal line, representing a mirror. Draw a line, representing a ray of light, that strikes
the horizontal mirror at an angle that is not perpendicular. How will this light ray be reflected
off of the mirror? Draw the reflected ray of light and describe the geometry of the situation
precisely.

90. Suppose you were surrounded by a cylindrical mirror and stood at the center, the axis of rotational
symmetry. If you shined a light horizontally at the cylinder, how would the light reflect? How
does this situation compare to Figure 4.7?

91. Figure 4.18 shows a parabola. At each of the nine points where the vertical lines meet the
parabola, very carefully draw the tangent line to the parabola this point.

The parabola you are working with is a two-dimensional model of a parabolic reflector which
is a parabolic surface which is has a reflective/mirrored surface on the inside face of this surface. Fig-
ure 4.19 shows the world’s largest parabolic reflector, the radio telescope at the Arecibo Observatory.
Each of the vertical lines in Figure 4.18 represents a ray of light arriving at the parabolic reflector.

92. Can you use your observations in Investigation 89 to determine how these light rays will reflect
off the parabola? Explain.

93. Reflect each of the nine rays of light off of the parabola, extending the reflected rays beyond the
axis of symmetry of the parabola. What do you notice?

94. Explain why rays of light, radio waves, and microwaves that arrive at parabolic reflectors from
outer space, distant radio wave emitters and orbiting satellites are essentially parallel to one
another when they meet the surface of the reflector, as they do in Figure 4.18.
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95. You have just (re-) discovered the mathematics of satellite dishes. Explain.
96. Suppose the process was reversed. That is, suppose that a light source was placed at the focus

of the parabola. As the light rays shone off of the parabolic mirror, how would they travel
outward into the world after being reflected? When and why might this be useful? Explain.

Figure 4.19. Arecibo Observatory, located in Puerto Rico - the world’s largest radio telescope.

This remarkable property of parabolas was certainly known to Diocles (Greek mathematician;
ca 240 BC - ca 180 BC); he wrote about it in his On Burning Mirrors Legend has it that this property
was known to Archimedes (Greek mathematician, inventor, physicist, and astronomer; ca 287 BC
- ca 212 BC) and that he used this property to destroy Roman attack ships during the Siege of
Syracuse. According to this legend Archimedes designed an array of reflecting mirrors in a parabolic
shape which focussed the reflected rays of the sun onto the ships thereby setting them afire. This
legend was “busted” by the popular television show MythBusters, appearing in two different episodes
because it caused so much controversy.2

8.4. Elliptical Pool Tables. Imagine playing pool on an elliptical pool table, or actually playing
billiards, where there are no pockets in the table. Figure 4.20 shows some of the different possible
paths of a ball in an elliptical pool table.

97. How can you predict how the ball is going ton “bounce off” the wall on an elliptical pool table?
98. Draw (by hand) an elliptical pool table and the path of a ball using protractor and ruler. Use

Figure 4.21 to help you draw an ellipse. Explain your strategy of finding and drawing the
path.

99. Describe the different mathematical shapes the paths create in Figure 4.20. Did your path look
like one of them?

100. Now draw an elliptical pool table and the path of a ball using GeoGebra. Explain your strategies.
101. Find the angle in which the ball has to start so that the path of the ball is exactly a quadrilateral.

Use an ellipse that goes through the points (2, 0) and (0.1) and start the ball at (2, 0).

2The first was the segment “Ancient Death Ray” from Episode 16 which aired on 9/29/2004. The second was a

whole show dedicated to this myth, “Archimedes’ Death Ray” which is Episode 46 which aired on 1/25/2006.
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Figure 4.20. Elliptical Pool Table

Figure 4.21. How to Draw an Ellipse

102. Find the angle in which the ball has to start so that the path of the ball is exactly a hexagon.
Use an ellipse that goes through the points (2, 0) and (0.1) and start the ball at (2, 0). You
might have to approximate your answer...

103. How are elliptical pool tables related to string art?
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9. Fundamental Theorem of Calculus

In string art we can see that the curve that fits the tangent lines is unique! This is a version
of the first fundamental theorem of calculus proved first by Isaac Barrow (English Theologian and
Mathematician; 1630 - 1677), see Figure 4.22.

Figure 4.22. Isaac Barrow
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CHAPTER 5

Integration

My husband is a physicist. He was “embarrassed” to marry someone who never took
calculus. On our first Christmas he gave me this big, fat calculus book. On our second
Christmas I gave him a writer’s notebook - full of all of the answers to the questions in the
calculus textbook. Doing calculus for love is a better reason than we generally give kids in
school.

Susan Ohanian (Public School Teacher and Freelance Writer; 1946 - )

1. Quadrature of the Parabola

Archimedes of Syracuse (287 BC; 212 BC - Greek mathematician) was one of the greatest
mathematicians of all time, see Figure 5.1.

Figure 5.1. Archimedes

Not only did he plant the seeds for many ideas now known as calculus, he also invented all kinds of
machines using screws, pullies and levers. Many of his inventions were used in the war of his hometown
Syracus against the Romans. The area in mathematics he was most interested in was geometry. We
will investigate one of his beautiful solutions to a geometric problem as an entryway into thinking
about area.

Archimedes “simple” problem was the following: compute the area of a parabolic segment, see
Figure 5.2. The next investigations will lead you through his approach of finding the area. To make
it a little easier we will look at a particular parabola, y = 16−x2, and compute the area between that
graph and the x-axis.
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Figure 5.2. A General Parabolic Segment

1. Take the equation y = 16− x2 and graph it on graph paper.
2. Estimate the area between the parabola and the x-axis using your grid paper.

Archimedes’ key idea was to use a method of exhaustion . He filled the area under the curve
with triangles in such a way that he could predict the area of all the triangles and hence the area of
the parabolic segment.

For the following investigations we suggest to use GeoGebra (http://www.geogebra.org) to
compute the areas of the triangles. You probably remember the area formular for triangles from
high school? It is base times height divided by 2, or as an equation A = bh

2 . While this is correct
it is not always possible to use this equation, as you will see below. If you do want to compute
the areas by hand, you can use Pick’s theorem (see chapter ???) or use the equation at http:

//www.mathopenref.com/coordtrianglearea.html.

3. Draw the parabola y = 16− x2 in GeoGebra by typing the equation in the command line on the
bottom of the window.

4. Draw the triangle T1 with vertices (−4, 0), (0, 4) and (0, 16) in GeoGebra using the polygon tool.
Compute the area by hand using A = bh

2 . Now use the area tool in GeoGebra to compute
the area. Did you get the same answer?

5. Now draw the triangle T2 with vertices (−4, 0), (−2, 12), and (0, 16) and compute its area by
hand and using GeoGebra. What do you notice?

6. How does the x-coordinate of the new point (−2, 12) relate to the x-coordinates of the old points
(−4, 0) and (0, 16)?

7. Find another triangle of the same area as T2 under the parabola (use symmetry).
8. Can you find the next smaller triangle T3 Archimedes would have used? How many triangles of

the same area are there?
9. Write the area of all triangles so far as a sum: A = 64+???. How will the pattern continue?

Write down the next 4 terms in the sum.
10. How many more triangles areas do we need to compute to find the total area of the parabolic

segment?

Archimedes was just discovering how to formally handle infinitely many objects (2000 years before
anyone else reinvented it!). When he published his result he was using a different technique though to
confirm the supposed value of the area. He used a Proof by Contradiction, showing that the area of the
parabolic segment could not be less and could not be more than the supposed value. Read more about
proofs by contradiction in Discovering the Art of Mathematics: Reasoning, Truth, Logic and Certainty.

To finish Archimedes’ solution we need to understand how to find the value of a geometric series.
If you have read the chapter Grasping Infinity in the book Discovering the Art of Mathematics: The
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Infinite, you can continue with Investigation 11. If not, here is a quick summary:

Mathematicians call an infinite sum a series. Series in which you multiply each addend by the
same number r to get to the next addend are called geometric series, e.g.

1 +
1

2
+

1

4
+

1

8
+ · · ·

Here each term is multiplied by r = 1
2 to get to the next. If you have played with series before you

will know that often we have no idea which value the series converges to (if any). So the following
result is very special and useful: If |r| < 1 the value of the geometric series 1 + r + r2 + r3 + · · · is
equal to 1

1−r . Or, as mathematicians write formally,

∞∑
n=0

rn =
1

1− r
.

If you wonder why this is true (and as a true mathematician you should! Never believe statements
without a good argument!) work through the investigations in the chapter Grasping Infinity in the
book Discovering the Art of Mathematics: The Infinite. Now you are ready to continue following
Archimedes’ thinking:

11. Find the value of the geometric series in Investigation 9.
12. Compute the area between the parabola 16− x2 and the x-axis using Archimedes’ triangles and

the geometric series.
13. What are advantages of using Archimedes’ triangles in the above computations? What are dis-

advantages?

2. Riemann and Cauchy and again the Parabola

Men pass away, but their deeds abide.
Augustin-Louis Cauchy (French Mathematician; 1789 - 1857)

If only I had the theorems! Then I should find the proofs easily enough.
Bernhard Riemann (German Mathematician; 1826 - 1866)

Without GeoGebra it would have been pretty difficult to compute the areas of all the triangles
in the parabolic segment in Section 1. We want to see if it would be easier to use different shapes to
approximate the area.

14. Looking at the parabolic segment between y = 16 − x2 and the x-axis, which shapes would you
have chosen to compute the area? Explain your thinking.

15. Classroom Discussion: Compare the different strategies for finding area under the parabola
using different shapes by looking ad advantages and disadvantages.

We will use GeoGebra to investigate some ways to approximate the area. You might have thought
of these yourself in the investigation above.

16. Draw the function f(x) = 16 − x2 in GeoGebra. Now use the command UpperSum[f,-4,4,8].
How does this approximate the area between the parabola and the x-axis?

17. Change the 8 in UpperSum[f,-4,4,8] to other values and observe what happens. How can you get
a more accurate apprximation of the area? Explain.

18. Now use the command LowerSum[f,-4,4,8]. How does this approximate the area between the
parabola and the x-axis?
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19. Change the 8 in LowerSum[f,-4,4,8] to other values and observe what happens. How can you get
a more accurate apprximation of the area? Explain.

20. How can you use the values from the upper sum and the lower sum to get an even better ap-
proximation for the area? Let GeoGebra compute your approximation to see if it is actually
better.

This method of computing the area under a curve was invented by Bernhard Riemann (German
Mathematician; 1826 - 1866), that is why the sum of the rectangle areas are called Riemann Sums.
Riemann was a brilliant (but very shy) mathematician who laid the groundwork for Differential
Geometry, an vibrant area of mathematics that analyzes smooth shapes in higher dimensions. See
Figure 5.3 for a picture of Riemann’s minimal surface.

Figure 5.3. Riemann’s Minimal Surface

To get ab glimpse of what mathematicians do in differential geometry you can watch the beginning
of the video http://www.youtube.com/watch?v=8qGM8HAl_pI which shows the proof of the Willmore
conjecture, a problem just solved by Fernando Coda Marques and Andre Neves in 2012.

It seems as though this new Riemann Sum method will not easily compute the precise area for us
since we have to add so many rectangle areas. But actually there is something else happening here,
which is really amazing - and you are about to discover it yourself!

If mathematicians are looking for patterns and structure, they often look at simpler objects first.
In our case we will look at simpler functions.

21. Change the function in GeoGebra to f(x) = 2x. Change the left point of the interval to a = 0
and the right point of the interval to b = 1. What is the best approximation of the area under
the graph if you have 100 rectangles?

22. Now change the right end point to b = 2. Again, what is the best approximation for the area?
23. Now change the right end point to b = 3. Again, what is the best approximation for the area?
24. Now change the right end point to b = 4. Again, what is the best approximation for the area?
25. Record your values in the following table.
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end points b area under the graph between a = 0 and b
1
2
3
4

26. Do you notice a pattern in the table? How would the next entries continue? Explain. (If you
can not find the pattern, read the chapter about linear and quadratic growth in the book
Discovering the Art of Mathematics: Patterns.)

27. Use your pattern to find the area under the graph of f(x) = 2x from a = 0 to any b. Your answer
should contain b.

We hope to find a general pattern for polynomial functions. A polynomial is a sum of terms, each
consisting of a power of the variable x multiplied by some constant. For example: f(x) = 4x5+2x3−26
is a polynomial of degree 5.

28. Independent Investigation: Repeat the above experiment for other functions.
You might want to split up the work and let different groups work on different functions.
a. f(x) = 3x2

b. f(x) = 4x3

c. f(x) = 5x4

d. f(x) = 1
e. f(x) = x
f. f(x) = x2

g. f(x) = x3

h. f(x) = x4

Can you see a pattern for the area? If I have a function f(x) = xn how do I find its area
between a = 0 and any b?

Using your conjectures from above, can you determine the following areas (without using GeoGe-
bra or any other help)?

29. Find the area under f(x) = x5 between 0 and b using your above conjectures. Explain your
reasoning.

30. Find the area under f(x) = 3x5 between 0 and b using your above conjectures. Explain your
reasoning.

31. Find the area under f(x) = 3x5 + 1 between 0 and b using your above conjectures. Explain your
reasoning.

32. Find the area under f(x) = x5 + x8 between 0 and b using your above conjectures. Explain your
reasoning.

For many functions f you can now compute a different function depending on b. This second
function has a name, it is called an antiderivative of f . For example f(x) = x2 has an antiderivative

g(b) = b2

2 .

33. Use your knowledge about derivatives from Chapter 4 to explain why the second function is called
an antiderivative of f .

34. Is it surprising to you that the computation of area can have a strong connection to derivatives?
Explain.
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The amazing connection between areas and derivatives was first discovered in the 16th century. It was
stated and proven as the Fundamental Theorem of Calculus in the 18th century. Augustin-
Louis Cauchy (French Mathematician; 1789 - 1857) was the first to prove the result rigorously in
1823.

Let’s summarize what we know so far:

If we want to compute the area under the graph of a function f from a = 0 to
b we need to find an antiderivative of f and evaluate it at b.

35. Compute the area under the parabola f(x) = 16−x2 using anti-derivatives. Compare your answer
to your original value for the area from Archimedes’ method. What do you notice?

There is something we don’t understand yet when the left end point of our interval is not a = 0.
We will use GeoGebra to explore the areas for different values of a.

36. Find the area under the graph of f(x) = 1 from a = −1 to b = 1.
37. Find the area under the graph of f(x) = 1 from a = −2 to b = 2.
38. Find the area under the graph of f(x) = 1 from a = −3 to b = 3.
39. Find the area under the graph of f(x) = 1 from a = −4 to b = 4.
40. Remembering your investigations from before, what is an antiderivative g of f(x) = 1?
41. Fill the following table with the required values and see if you can detect a pattern how we can

use the antiderivative to find the values in the area column.

a b g(a) g(b) area
-1 1
-2 2
-3 3
-4 4

42. Find the area under the graph of f(x) = 3x2 from a = −1 to b = 1.
43. Find the area under the graph of f(x) = 3x2 from a = −2 to b = 2.
44. Find the area under the graph of f(x) = 3x2 from a = −3 to b = 3.
45. Find the area under the graph of f(x) = 3x2 from a = −4 to b = 4.
46. Remembering your investigations from before, what is an antiderivative g of f(x) = 3x2?
47. Fill the following table with the required values and see if you can detect a pattern how we can

use the antiderivative to find the values in the area column.

a b g(a) g(b) area
-1 1
-2 2
-3 3
-4 4

48. Make a conjecture: How do we find the area under the graph of a function f between a and b?

49. Classroom Discussion: Compare your conjectures for the area computation under the graph
of a function f between a and b and agree as a class on one of them.

50. Using the above conjecture find the antiderivative of 16−x2 and find the area under the parabola
16 − x2 between a = −4 and b = 4. Compare your result with you previous answer in
Investigation 12.

51. Can you see why using the fundamental theorem of Calculus to find area is so powerful? What
is the advantage over Archimedes’ method? Explain in detail.
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3. Integration and Art

The idea of Riemann sums seems to be present in many different areas and objects. Look for
instance at the church Hallgŕımskirkja in Reykjavik, see Figure 5.4.

52. Where do you see a connection between Riemann sums and the church? Explain.

Figure 5.4. Church Hallgŕımskirkja in Reykjavik, Iceland

Robert Smithson (American Artist; 1938 - 1973) was part of the minimalism movement in
which the artist uses minimal forms and concepts to expose more of the essence of a piece of art.

Walker Art Center (http://www.walkerart.org) describes the piece as follows:

Leaning Strata is the visual manifestation of an extensive set of investigations Smithson was
conducting during the mid-1960s, which included geology, astronomy, perspective, mapping, and the
nature of time and matter. The title suggests a geological configuration. The stepping of the elements
in the form, if continued according to the system established (i.e., moving at a regular rate away from
the implied center), would conclude in a spiral.

53. Explain how the “Leaning Strata” by Robert Smithson, see Figure 5.5, is similar and different
from a Riemann sum.

The area under the graph of a function between a and b is called a definite integral and was
denoted by Riemann as ∫ b

a

f(x)dx.
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Figure 5.5. Robert Smithson: Leaning Strata, 1968

The concept of integration (together with the concept of derivatives, see Chapter 4) was developed
independently by Isaac Newton (English physicist and mathematician; 1642 - 1727) and Gottfried
Leibniz (German mathmatician; 1646 - 1716) in the late 17th century. Their (and your) above
discovery in formal Riemann notation would be:∫ b

a

f(x)dx = F (b)− F (a),

with F being an antiderivative of f .

4. Tolstoy’s Integration Metaphor

Leo Tolstoy (Russian Writer; 1828 - 1910) wrote his famous novel War and Peace from 1863 to
1869. It is one of the longest novels ever written, taking place during the war between France and
Russia in 1812. It is more than historical fiction though, containing many philosophical ideas. Did you
know that mathematics and philosophy are closely related? Many mathematicians were philosophers
and vice versa! The following quote shows how Tolstoy uses modern mathematical ideas to explain
his idea of the study of history.

The movement of humanity, arising as it does from innumerable arbitrary human
wills, is continuous.

To understand the laws of this continuouss movement is the aim of history...

Only by taking infinitesimally small units of observation (the differential of his-
tory, that is, the individual tendencies of men) and attaining to the art of integrating
them (that is, finding the sum of these infinitesimals) can we hope to arrive at the
laws of history. (page 918)

Leo Tolstoy (Russian Writer; 1828 - 1910)
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Stephen Ahearn states in his paper about Tolstoy’s metaphor: “Thus, to understand the laws
governing history, we must “integrate” the wills of all people. Once we are able to carry out this
integration, the historical laws will be apparent.” Tolstoy probably didn’t know of Riemann’s work,
but there are clear connection that you will think about in the next investigations1:

54. What are Tolstoy’s variables?
55. Why does Tolstoy point out that the movement of humanity is continuous?
56. What in Tolstoy’s metaphor corresponds to a Riemann sum?
57. What part of the integral corresponds to “taking infinitesimally small units for observation”?
58. Does the metaphor work or does it fail as a metaphor?
59. How do you feel about this use of mathematics to illustrate historical ideas?

60. Independent Investigation: Find at least one other person that was (or is)
interested in both, mathematics and philosphy. Describe the person’s life and try to
explain in your own words some of his or her philosophical and mathematical ideas.

5. Cars instead of Planets

After examining a philosophical connection to the idea of integration, we want to consider a “real
life” problem. Many questions that inspired the development of calculus came from physics, for in-
stance Isaac Newton (English Physicist and Mathematician; 1642 - 1727) studying Kepler’s laws
of the movement of planets. Since those laws are beyond the scope of this book, we will study the
movement of your car instead.

61. Assume you drove your car for 4 hours at a speed of 30 miles per hour. How far did you drive?
62. Graph the function of your speed and see if you can find the value of the distance that you drove

somewhere in the picture.
63. Assume you drove your car for 2 hours at 40 miles per hour and for 2 hours at 20 miles per hour.

How far did you drive?
64. Graph the function of your speed and see if you can find the value of the distance that you drove

somewhere in the picture.
65. In reality, you car doesn’t just start at 40 miles per hour, right? Draw the graph of a speed

function that is more reasonable. How would you find the distance you drove using the speed
curve? Explain in detail.

66. Explain the connection between integration and driving a car.

6. Integration in higher Dimensions

Now that we can use integration and the fundamental theorem of calculus to compute area, we
can wonder how this generalizes to higher dimensions. http://www.math.brown.edu/~banchoff/

multivarcalc2/multivarcalc2-4.html has a nice java applet that let’s you see how a Riemann sum
approximates the volume under a graph in three dimension. See also Figures 5.6-5.7.

Creating these Riemann Sums in three dimensions is based on the idea of Riemann sums in two
dimensions and is also very similar to the idea of slice forms, see Figure 5.8. You can read the chapter
about slice forms in the book Discovering the Art of Mathematics: Art and Sculpture to learn how to
create your own.

67. Explain the connection between slice forms and Riemann sums for graphs in three dimensions.
How are the ideas similar and how are they different?

1Investigations from Stephen T. Ahearn’s paper: Tolstoy’s Integration Metaphor from War and Peace. July 2004.
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Figure 5.6. Riemann Sum under the Graph of f(x) = x2 + 0.1y2 + 0.2

Figure 5.7. Riemann Sum under the Graph of f(x) = 1− 0.5x2 + 0.5y2

68. Explain the connection between integration in three dimensions and Smithson’s sculpture in
Figure 5.9.

69. Consider the lego structure build at Westfield State University in Figure 5.10. The structure
approximates the graph of the function f(x, y) = 5 cos(x2 + y2) + 6, see Figure 5.11. How
can you use lego pieces to explain Riemann Sums?
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Figure 5.8. Slice Forms

Figure 5.9. Robert Smithson: Map on Mirror Passaic, 1967
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Figure 5.10. Legos and Integration

Figure 5.11. The graph of f(x, y) = 5cos(x2 + y2) + 6
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7. Further Investigations and Connections

Learning is experience. Everything else is just information.
Albert Einstein (German born Physicist; 1879 - 1955)

You might have noticed that the text talks about an antiderivate instead of the antiderivative.
Why is that?

70. Can you find more antiderivatives for f(x) = x2 than just g(b) = b2

2 ? How many are there?
71. Will every function have more than one antiderivative? Explain.

There is another problem with our theory about integration and area computation that we have
avoided so far:

72. Find the area between the graph of f(x) = x2 and the x-axis using integration. WHat do you
notice about the sign of your result? How can we “fix” this problem?

73. Try your idea by computing the area between the function
h(x) = (x−3)(x+4)(x+1) and the x-axis between x = 0 and x = 4. Draw a graph on graph
paper to see if your result is reasonable.

The next investigations will help you see what else integration is connected to.

74. Find the mathematical equation for the graph of the frontline of the church Hallgŕımskirkja, see
Figure 5.12. The book The Nature of Mathematics by Karl J. Smith claims that it follows a
normal curve. Do you think this is true? There are models in google sketchup of the church
that might be helpful in answering this question. Can you trust just measuring the heights
of the rectangles in the picture? Why or why not?

Figure 5.12. Frontview of Church Hallgŕımskirkja in Reykjavik, Iceland

We will assume for the moment that the curve really a normal curve, also called a normal
distribution :

f(x) =
1

2σ
e

(x−µ)2

2σ2 .

If we wanted to estimate the material needed for all the “steps” on each side of the church we could
use our ideas of integration. Unfortunately it is not easy at all to compute the antiderivative for the
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normal distribution. To find an approximation you can use the idea of series. In fact, you have to
understand complex numbers to really understand the mathematics involved. The answer is given by
the error function erf(x), see Figure 5.13.

Figure 5.13. Complex Error Function Erf(z).
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CHAPTER 6

Alternating Harmonic Series

As we have already discovered, one of the essential problems of the calculus is to determine the
area under a curve. A critically important curve to find the area under is y = 1

x as the area under this
curve defines the natural logarithm, the inverse of the base e exponential that describes exponential
growth.

Author’s Note: Did the McLaurin series predate the sum of the alternating harmonic series sum?
One would think so or it would be a triviality - in some sense. So what is the history? How was it
that Pitero Mengoli discovered it in 1650?

In this section we will consider the area that defines ln(2). This is the area under the curve
between x = 1 and x = 2 as shown in Figure 6.1. We will try to express this area by approximating
it more and more closely via Riemann rectangles.1

Figure 6.1. Area under the curve y = 1
x for 1 ≤ x ≤ 2..

Copies of the figures below are included in the appendix for you to work with.

1. What is the area enclosed by the square in Figure 6.2?

2. In a copy of Figure 6.3, find and highlight a rectangle whose area is 1
2 .

1This approach is due to Matt Hudelson (; - ) from “Proof without words: The alternating harmonic series

sums to ln(2), Mathematics Magazine, vol. 83, 2010, p. 294.
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Figure 6.2. First approximation to the area under the curve y = 1
x for 1 ≤ x ≤ 2..

3. Shade a region whose area represents 1− 1
2 .

4. In a new copy of Figure 6.3, find and highlight a rectangle whose area is 1
3 .

5. Shade a region whose area represents 1− 1
2 + 1

3 .

6. After including two more terms, 1
2 and 1

3 , do you have a nice approximation for the area? Explain.

Figure 6.3. Dividing the domain of y = 1
x for 1 ≤ x ≤ 2 in half.
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Let’s try to continue this process, including terms in pairs.

7. On a copy of Figure 6.5, highlight rectangles of areas 1
4 and 1

5 that may be subtracted and added
(respectively) to approximate the area under the curve.

8. Shade a region whose area represents 1− 1
2 + 1

3 −
1
4 + 1

5 .

Figure 6.4. Second approximation to the area under the curve y = 1
x for 1 ≤ x ≤ 2..

9. On another copy of Figure 6.5, highlight rectangles of areas 1
6 and 1

7 that may be subtracted and
added (respectively) to approximate the area under the curve.

10. Shade a region whose area represents 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 .

11. The vertical lines in Figure 6.5 are spaced one-quarter of a unit apart. In Figure 6.6 we added
lines so there were lines spaced one-eighth of a unit apart. Could we repeat the process
above? Explain in detail.

12. Shade the region that would result from this approximation.
13. Write the sum that explicitly represents this area.
14. Using your observations above, explain how to write ln(2) as the sum of an infinite series. (The

name of this series is the alternating harmonic series.)

Author’s Note: Figure 5 looks like logarithmic graph paper. Is it?
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Figure 6.5. Third approximation to the area under the curve y = 1
x for 1 ≤ x ≤ 2..

Figure 6.6. Fourth approximation to the area under the curve y = 1
x for 1 ≤ x ≤ 2.
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CHAPTER 7

The Banach-Tarski Paradox

Perhaps the greatest paradox of all is that there are paradoxes in mathematics.
Edward Kasner and James Newman (American Mathematicians; - )

Major paradoxes provide food for logical thought for decades and sometimes centuries.
Nicholas Bourbaki (Fictional French Mathematician; - )

Since human beings have never encountered actually infinite collections of things in our
material existence, all of our attempts to deal with them must involve projecting our finite
experience... Therefore, we must rely on logical reasoning...and then be prepared to accept
the consequences of our reasoning, regardless of whether or not they conform to our intuitive
feelings.

W. P. Berlinghoff and K. E. Grant (American Mathematicians; - )

1. Introduction

As you have seen, our understanding of the infinite has lead to some surprising and counter-
intuitive results: infinite series that converge, infinite sets that have the same cardinality as the unit
interval, [0,1] but have measure zero; and other infinite sets that contain no intervals but have positive
measure. In this chapter we consider another counter intuitive result, the Banach-Tarski Paradox.
We begin with a popular puzzle.

1. In Figure 7.1 is a square made up from tangrams, a seven piece popular dissection puzzle from
China that is also a common manipulative in many elementary classrooms. What is the area
of the square formed from the seven pieces and what is the area of each piece? Be sure to
explain how you computed the area of each piece.

Figure 7.1. Tangram Puzzle Pieces
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2. Is the area of the whole square equal to the sum of the area of the pieces? Explain.

In the back of the book is a larger copy of Figure 7.1. Carefully cut out the seven pieces so you
may use them in the following questions.

3. In Figure 7.2 is a picture made from tangrams of a runner. Make this picture with your tangrams.
What is the area of the runner figure? Does runner have the same as the area of the square
in Figure 7.1? Explain.

Figure 7.2. Tangram Runner Puzzle

4. In Figure 7.3 is a two square tangram paradox . Explain why this is a paradox.

Figure 7.3. Tangram Square Paradox

5. Explain how you can resolve the paradox in Figure 7.3.
6. If a region with finite area or a solid with finite volume is cut up (dissected) into a finite number

of pieces and those pieces are rearranged (without changing them in any way) into new shapes
can the area or volume change? Why or why not?
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Your answer to Investigation 6 illustrates our intuition about the relationship between the area
(or volume) of the whole and the area of the pieces that make up the whole. There is a sense that
when a region or a solid is cut up into pieces and the pieces are rearranged, nothing can be gained or
lost. The next section has several examples that will challenge our intuition about dissections.

2. Equidecompositions

The tangram examples in Section 1 illustrate one of the two important concepts we will be using
in this chapter. We say that two sets, X and Y are equidecomposable if we can cut both X and
Y into the same number of non-overlapping finite pieces such each piece of X is congruent to exactly
one piece of Y . The term congruent means that the two pieces are identical in shape and size and
that we can transform one piece into the other by only using some combinations of the following rigid
motions:

1. A translation ; i.e shifting the entire piece a certain distance in a specific direction as shown
in Figure 7.4.

Figure 7.4. A Translation

2. A rotation ; i.e rotating the entire piece through a specific angle as shown in Figure 7.5.

3. A reflection ; i.e flipping the entire piece about a line or a point as shown in Figure 7.6.

7. We denote the natural numbers = {1, 2, 3, 4, . . . } by the symbol N. LetM = {1, 2, 3, 4, 6, 7, 8, 9, . . . }
(the natural numbers minis 5), S = {4, 5, 6, 7, 8, 9, . . . }, T = {2, 4, 6, 8, . . . }, U = {−2,−1, 0, 1, 2, 3, . . . }
and V = {. . . ,−4,−3,−2,−1}. To which of the sets M, S, T, U and V (if any) is N con-
gruent? Explain your reasoning.

8. Do any of your answers to Investigation 7 surprise you? Explain.
9. The other important concept we will need in this chapter is called shifting to infinity. Use your

answers to Investigation 7 to explain what this means.

Include something about Hilbert’s Hotel here?
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in the clockwise direction.

After a 45 degree rotationBefore rotation

Figure 7.5. A rotation of 45◦ in the clockwise direction.

through the dashed line

Before reflection

through the dashed line.

After a reflection through

Figure 7.6. A Reflection.

10. Show that the natural numbers, N, and M = {1, 2, 3, 4, 6, 7, 8, 9, . . . } (the natural numbers minus
the number 5) are equidecomposable.

Hint: Break both N and M into two pieces such that one pair of pieces from each
are identical and the other pair of pieces are congruent by a shift to infinity (i.e. a
translation).

11. Why might people find your answer to Investigation 10 surprising? Explain.

Our next example, showing that a circle is equidecomposable to a circle minus a point, is similar
to Investigation 10 but since it is done on a circle, this adds a layer of complexity.

12. In Figure 7.7 is a circle of radius 1. Cut a piece of string whose length is equal to the radius, then
beginning at P0, mark off a point P1 that is 1 unit (the length of the string) along the circle
away from P in the clockwise direction.
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0
1 P

Figure 7.7. A Circle of Radius 1.

13. Find and mark off a point P2 on the circle that is one unit from P1 along the circle in a clockwise
direction. Continue in this manner to plot the points P3, P4, P5, P6, P7, P8, P9 and P10 on the
circle that are 1 unit from the previous point along the circle in a clockwise direction.

Let P be the set of points on the circle that come from the (infinite) continuation of the procedure
in Investigations 12-13. That is P = {P0, P1, P2, P3, . . . }. We want to do a shift to infinity on this
set of points like we did in Investigation 10. However, there is a potential problem.

14. How might the set P differ from N in a way that might make shifting to infinity not possible?

The potential problem you identified in Investigation 14 does not occur because π is an irrational
number ; that is, we can not find whole numbers p and q (with q 6= 0) so that π = p

q . In the next

few questions you will explore why the fact that π is irrational means that our set P must be infinite.
(The proof that π is irrational is beyond the scope of this book, but it is worth noting that the first
proof of the irrationality of π is due to Johann Heinrich Lambert (Swiss Mathematician; 1728 -
1777) who proved it in 1761.)

15. Suppose Pn = Pk for some pair of whole numbers n and k with n > k as illustrated in Figure 7.8.
We are going to measure the distance between Pk and Pn in two different ways. The first
way uses the fact that the distance along the circle between successive points Pi and Pi+1 is
1. Using this fact, what is the distance along the circle between the points Pk and Pn?
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=
kn
PP

3

2

1

P

P

P

0
1 P

P
4

P5

P
6

Figure 7.8. Pn = Pk for some n and k.

16. Another way to compute the distance along the circle between Pk and Pn is to use the circum-
ference formula for the circle. Since Pn = Pk, we know that we will have gone around the
circle some whole number of times, say L times; use this and the circumference formula for
a circle to determine the distance along the circle between Pn and Pk.

17. Use your answers to Investigations 15-16 to show that if Pn = Pk then we can find whole numbers
p and q so that π = p

q ; i.e., π would have to be a rational number.

18. Use your answers to Investigations 15-17 and the fact that π is irrational to explain why all the
points Pi in P are distinct; and hence, why the set P is infinite.

We are now ready to show that a circle and a circle minus a point are equidecomposable. We will
let C denote the circle and let C ′ demote the circle minus P0 as shown in Figure 7.9.

19. Use the set P and the technique of shifting to infinity to show that C and C ′ are equidecomposable.
Hint: As you did in Investigation 10, break both C and C ′ into two pieces such that
one pair of pieces from each are identical and the other pair of pieces are congruent by a
shift to infinity.

While the results to Investigation 10 and Investigation 19 may seem a bit surprising to you,
there is a similar result that is even more surprising, the Banach-Tarski Paradox . Informally, the
Banach-Tarski Paradox says that it is possible to take a pea cut it up into a finite number of pieces
and using only the rigid motions described on page 77 resemble them to a ball the size of the sun. A
more formal version of the theorem is the following:

Theorem 1 (The Banach-Tarski Theorem). It is possible to divide a solid ball into a finite number
of pieces and then using only rigid motions, reassemble the pieces in such a way as to create two solid
balls whose size and volume are the same as the original ball.

This result first appeared in a 1924 paper entitled Sur la décomposition des ensembles de points en
parties respectivement congruentes (Translation: On the decomposition of sets of points in respectively
congruent parts) by Stefan Banach (Polish Mathematician; 1892 - 1945) and Alfred Tarski (Polish
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C'C

P
0

Figure 7.9. Circles C and C ′.

Figure 7.10. The Banach-Tarski Theorem

Mathematician; 1902 - 1983). While the technical aspects of this result are beyond the scope of this
book, the following metaphor1 will give you a sense of the ideas behind this remarkable result.

20. Do you find the result of the Banach-Traski Paradox surprising? Explain?
21. Do you

3. The HyperDictionary

The company hyper.com has decided to create the worlds most extensive online dictionary, the
HyperDictionary. This dictionary will contain all possible words in the English language without
accompanying definitions. That is, it will contain all the words we could possibly encounter in the
English language; words like EQUIDECOMPOSABLE and SEQUESTRATION; as well as made up
words such as AVRACADAVRA (from the Harry Potter books) and SUPERCALIFRAGILISTICEX-
PIALIDOCIOUS (from the movie Mary Poppins); and non-sensical words like DGBJKRTSPQXZ.
hyper.com decides to put the dictionary on one big page.

22. What will be the first 5 words in the Dictionary?
23. How many words will be in the Dictionary before the word AB? Explain.
24. How many words will be in the Dictionary between the word AB and the word AC? Explain.

1Adapted from Wapner, Leonard, The Pea and the Sun: A Mathematical Paradox, A. K. Peters, Ltd., Wellesley,

MA, 2005, pp. 135-138.
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This dictionary has some very interesting properties that are worth exploring. While the Dictio-
nary technically contains only individual words it will also contain complete sentences and definitions,
if you know how to look for them.

25. Why will Virgil’s famous saying, ”Love conquers all” appear in the HyperDictionary? Explain.
26. Why will the definition, ”A square is a four sided figure with equal sides and equal angles” appear

in the HyperDictionary? Explain.
27. Why will the incorrect definition, ”A square is a flying monkey” also appear in the HyperDic-

tionary? Explain.
28. Explain why Hermann Melville’s book, Moby Dick will appear in its entirety in the HyperDic-

tionary.
29. Will anything you would ever want to know appear in the HyperDictionary? Explain.

As hyper.com gets set to have the HyperDictionary go live, concerns are raised about how long
it will take for the page to upload on a browser. In an effort to decrease the loading time, hyper.com
decides to break the Dictionary into 26 separate pages, one for each letter. The first page will consist
of all possible words that begin with A; the second will list all possible words that begin with B; the
third will list all possible words that begin with C and so on.

30. What will be the first 5 words on the A page?
31. What will be the first 5 words on the B page?
32. What will be the first 5 words on the Z page?

As hyper.com once again gets set to have the HyperDictionary go live, more concerns are raised
about the length of time it will take for each page to upload on a browser. In another effort to decrease
the upload time for each page, the authors decide to eliminate the first letter of every word on each
page.

33. What will now be the first 5 words be on the A page? Explain.
34. What will now be the first 5 words be on the B page? Explain.
35. What will now be the first 5 words be on the Z page? Explain.
36. In what ways will the 26 pages be the same and in what ways will they be different? Explain.
37. How do these 26 pages now compare to the original HyperDictionary? Explain.
38. Why are your answers to Investigations 36-37 paradoxical?
39. The manner in which each of the 26 pages were modified corresponds to which one of the rigid

motions on page 77? Explain.
40. Explain how your answers to Investigations 30-39 give us a metaphor for Theorem 1, the Banach-

Tarski Paradox.
41. What does the Banach-Tarski Paradox suggest I should be able to do if I had a pound of gold?

Explain.
42. Why do you think no one has been able to do what you stated in your answer to Investigation 41?

Explain.
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