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3.11 The Paper Clip Möbius Microworld . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Preface

This book is a very different type of mathematics textbook. Because of this, users new to it, and
its companion books that form the Discovering the Art of Mathematics library1, need context
for the book’s purpose and what it will ask of those that use it. This preface sets this context,
addressing first the Explorers (students), then both Explorers and Guides (teachers) and finishing
with important information for the Guides.

0.1 Notes to the Explorer

“Explorer?”

Yes, that’s you - an Explorer. And these notes are for you.

We could have addressed you as “reader,” but this is not a book intended to be read like a
traditional book. This book is really a guide. It is a map. It is a route of trail markers along a
path through part of the vast world of mathematics. This book provides you, our explorer, our
heroine or hero, with a unique opportunity to explore - to take a surprising, exciting, and beautiful
journey along a meandering path through a great mathematical continent.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by exercises that mimic examples laid out for you to ape. Rather, the majority of each
chapter is made up of Investigations. Each chapter has an introduction as well as brief surveys
and narratives as accompaniment, but the Investigations form the heart of this book. They are
landmarks for your expedition. In the form of a Socratic dialogue, the Investigations ask you to
explore. They ask you to discover mathematics. This is not a sightseeing tour, you will be the
active one here. You will see mathematics the only way it can be seen, with the eyes of the mind
- your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling
if you are not forced to approach it in a mindless, stress-invoking and mechanical manner. In
this journey you will find the mathematical world to be quite different from the static barren
landscape most textbooks paint it to be. Mathematics is in the midst of a golden age - more
mathematics is being discovered now than at any time in its long history. Each year there are
50,000 mathematical papers and books that are reviewed for Mathematical Reviews! Fundamental
questions in mathematics - some hundreds of years old and others with $ 1 Million prizes - are

1All available freely online at http://artofmathematics.org/books.
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being solved. In the time period between when these words were written and when you read them
important new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics
is beautiful. How can this happen? Well, they were busy learning arithmetical and quantitative
skills, statistical reasoning, and applications of mathematics. These are important, to be sure. But
there is more to mathematics than its usefulness and utility. There is its beauty. And the beauty of
mathematics is perhaps its most powerful, driving force. As the famous Henri Poincaré (French
mathematician; 1854 - 1912) said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as a liberal art and as a science. As a powerful science, it shapes
our technological society and serves as an indispensable tool and as a language in many fields. But
it is not our purpose to explore these roles of mathematics here. This has been done in other fine,
accessible books. Instead, our purpose is to journey down a path that values mathematics for its
long tradition as a cornerstone of the liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was preserved in monasteries. The classical liberal
arts organized knowledge in two components: the quadrivium (arithmetic, music, geometry, and
astronomy) and the trivium (grammar, logic, and rhetoric) which were united by philosophy.
Notice the central role of mathematics in both components. During the Renaissance and the Sci-
entific Revolution the importance of mathematics as a science increased dramatically. Nonetheless,
it also remained a central component of the liberal arts during these periods. Indeed, mathematics
has never lost its place within the liberal arts except in contemporary classrooms and textbooks
where the focus of attention has shifted solely to its utilitarian aspects. If you are a student of the
liberal arts or if you want to study mathematics for its own sake, you should feel more at home
on this expedition than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more!

In your exploration here you will see that mathematics is a human endeavor with its own rich
history of struggle and accomplishment. You will see many of the other arts in non-trivial roles:
art, music, dance and literature. There is also philosophy and history. Students in the humanities
and social sciences, you should feel at home here too. There are places in mathematics for anyone
to explore, no matter their area of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

We hope that your discoveries and explorations along this mathematical path will help you glimpse
some of this beauty. And we hope they will help you appreciate Russell’s claim:

2
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. . . The true spirit of delight, the exultation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

Finally, we hope that your discoveries and explorations enable you to make mathematics a part of
your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have beaconed
people to explore the many continents of mathematics throughout humankind’s history.

0.2 Navigating This Book

Intrepid Explorer, as you ready to begin your journey, it may be helpful for us to briefly describe
basic customs used throughout this book.

As noted in the Preface, the central focus of this book is the Investigations. They are the
sequences of problems that will help guide you on your active exploration of mathematics. In each
chapter the Investigations are numbered sequentially in bold. Your role will be to work on these
Investigation individually or cooperatively in groups, to consider them as part of homework assign-
ments, to consider solutions to selected Investigations that are modeled by your fellow explorers -
peers or your teacher - but always with you in an active role.

If you are stuck on an Investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us:

If there is no struggle, there is no progress.

Or what Shelia Tobias (American mathematics educator; 1935 - ) tells us:

There’s a difference between not knowing and not knowing yet.

Keep thinking about the problem at hand, or let it ruminate a bit in your subconscious, think about
it a different way, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Independent Investigations are so-called to point out that the task is more involved than
the typical Investigations. They may require more significant mathematical epiphanies, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections
between the mathematics you’re exploring and other fields - especially in the liberal arts. Whether
you complete a few of the Connections of your choice, all of the Connections in each section, or
are asked to find your own Connections is up to your teacher. We hope that these Connections
sections will help you see how rich mathematics’ connections are to the liberal arts, the fine arts,
culture, and the human experience.

3
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Further Investigations, when included, are meant to continue the Investigations of the math-
ematical territory but with trails to significantly higher ground. Often the level of sophistication
of these investigations will be higher. Additionally, our guidance will be more cursory - you are
bushwhacking on less well-traveled trails.

In mathematics, proof plays an essential role. Proof is the arbiter for establishing truth and
should be a central aspect of the sense-making at the heart of your exploration. Proof is reliant on
logical deductions from agreed upon definitions and axioms. However, different contexts suggest
different degrees of formality. In this book we use the following conventions regarding definitions:

• An Undefined Term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An Informal Definition is italicized and bold- faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A Formal Definition is bolded the first time it is used. This is a formal definition that is
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a Biographical Name appears it is bolded and basic biographical
information is included parenthetically to provide historical, cultural, and human connections.

In mapping out trails for your explorations of this fine mathematical continent we have tried
to uphold the adage of George Bernard Shaw (Irish playwright and essayist; 1856 - 1950):

I am not a teacher: only a fellow-traveler of whom you asked the way. I pointed ahead
– ahead of myself as well as you.

We wish you wonderful explorations. May you make great discoveries, well beyond those we could
imagine.

0.3 Directions for the Guides

Faithful Guide, you have already discovered great surprise, beauty and excitement in mathematics.
This is why you are here. You are embarking on a wonderful journey with many explorers looking
to you for bearings. You’re being asked to lead, but in a way that seems new to many.

We believe telling is not teaching. Please don’t tell them. Answer their questions with ques-
tions. They may protest, thinking that listening is learning. But we believe it is not.

This textbook is very different from typical mathematics textbooks in terms of structure (only
questions, no explanations) and also of expectations it places on the students. They will likely
protest, ”We’re supposed to figure this out? But you haven’t explained anything yet!” It is
important to communicate this shift in expectations to the students and explain some of the
reasons. That’s why we have written the earlier sections of this preface, which can help do the
explaining for us (and for you).
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You need support as well. A shift in pedagogy to a more inquiry-based approach may be
subtle for some, but for many it is a great leap. Understanding this we have assembled an online
resource to support teachers in the creation and nurturing of successful inquiry-based mathematics
classrooms. Available online at http://artofmathematics.org/classroom it contains a wealth
of information - in many different forms including text, data, videos, sample student work - on
many critical topics:

• Why inquiry-based learning?

• How to get started using our books. . .

• A culture of curiosity

• Learning contracts

• Grouping students

• Choosing materials - Mixing It Up

• Asking good questions

• Creating inquiry-based activities

• Making mistakes

• Cool things

• Proof as sense-making

• Homework stories

• Exams

• Posters

• Assessment: Student Solution Sets

• Evaluating the effectiveness of inquiry-
based learning

• . . . and much more . . .

We wrote the books that make up the Discovering the Art of Mathematics library because they
have helped us have the most extraordinary experiences exploring mathematics with students who
thought they hated mathematics and had been disenfranchised from the mathematical experience
by their past experiences. We are encouraged that others have had similar experiences with these
materials. We love to hear success stories and are also interested in hearing about things that
might need to be changed or did not work so well. Please feel free to share your stories and
suggestions with us: http://artofmathematics.org/contact.

0.3.1 Chapter Dependencies

Guides are encouraged to pick and choose topics freely, from this book and others in the Discovering
the Art of Mathematics series, depending on their interests and those of their students. The chapter
dependencies in this book are as follow:

5
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Chapter 1

Panorama Photography

I don’t know anything, but I do know that everything is interesting if you go into it deeply
enough.

Richard Feynman (American Phsyicist; 1918 - 1988)

1.1 StreetView and the Viewing Sphere

The goal of this chapter is to make a 360 degree panorama that captures everything we see around
us. How can we create a picture of all of that for somebody else to show them how interesting our
surroundings are?

Have you ever looked at Google Street View?

1. Go to maps.google.com, find a major street that you are familiar with. Drag the little
yellow “Street View” person to a location for which Street View is available (indicated by
blue lines). Take a look all around. Describe what you see.

2. Can you tell what’s right above the camera? Can you tell what’s right below the camera?
What portion of the real world can you see in this Google Street View image? Explain.

We would like to find a way to record and make sense of such a Street View panorama for the
location you are in right now. 1

As an example, consider the image in “Street View” of the beach at the “Daughters of the
American Revolution State Forest” in Goshen, MA (http://goo.gl/tDQ5jm)2 or of a classroom
in Wilson Hall at Westfield State College (https://goo.gl/wm4mWy).3

Imagine that the viewing sphere is centered in the room you are in, sort of hanging in the
middle. Imagine your head is inside the sphere with one eye at the center, looking around, what

1For example, the authors are located at the Westfield State University in Massachusetts: https://www.google.

com/maps/@42.1296483,-72.7953262,3a,75y,32.57h,63.19t/data=!3m4!1e1!3m2!1sqi7SRQrH30-2pOiZV9mTTQ!

2e0.
2The full link was originally under Google Views, a service that was discontinued on Aug 17 2015, at these links

https://www.google.com/maps/views/view/110195214316923802478/gphoto/6063795923312702690) and Class-
room (link: https://www.google.com/maps/views/view/110195214316923802478/gphoto/6077800831661312866),
for exploring theskeleton of a room.

3Full link: https://www.google.com/maps/contrib/110195214316923802478/@42.1403899,-72.7691889,12z

7
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would you see? Now you want to draw the outlines of what you see on the inside of the sphere
(like a mini IMAX movie sphere). The following prompts will help you accomplish this:

3. Pick two corners of the room. What does the line connecting these corners look like on the
sphere? How would you describe this curve?

4. Draw a few other curves connecting the two points on the sphere. Explain what is special
about the curve you drew first.

5. We would like you to investigate the skeleton of this room, including the lines where the
walls meet the floor and the ceiling, and where the walls meet each other. What does this
skeleton look like on the sphere? Explain your reasoning.

6. Identify one or two objects in the room and describe what they would look like on the sphere.

7. Where do parallel lines in the room map to on the sphere? Explain why.

8
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1.2 Making Flat Images

Now we have a perfect picture of our surroundings on the sphere–its a 360 degree panorama. While
we could hang these picture spheres on a wall, they do not stack nicely in a photo album. So how
could you make a flat image of the full 360 degree panorama? Be ready to be creative.

8. Create a way to make a flat image. Describe where each point on the sphere would end up
on your flat image (this means you have a function).

9. Using your function, draw the skeleton of the room on your flat image. What do you notice?

10. Where do parallel lines in the room end up on your flat image? Explain why.

Carl Friedrich Gauß (German mathematician, pronounced “Gauss”; 1777 - 1855) proved
in his ”Theorema Egregium” (Latin for ”Remarkable Theorem”) that it is impossible to find a
“perfect” map from the sphere to the plane. Any resulting flat image will be squished or stretched
in places.

11. Describe how your function stretches or squishes the image of the viewing sphere.

To prepare for the upcoming Independent Investigation, we want to understand which objects in
the outside world show up as specific geometric objects on the sphere (see Figure 1.1 for illustrations
of these terms).

12. Identify lines in the real world that show up on meridians on the sphere.

13. Identify lines in the real world that show up on latitudes on the sphere.

14. Identify points in the real world that show up as poles on the sphere.

15. Identify lines in the real world that show up on the equator on the sphere.

16. Identify some lines in the real world that show up on great circles on the sphere.

17. Independent Investigation: For each of the functions your class developed in Inves-
tigation 8 describe in detail what happens to the following geometric objects (see Fig-
ure 1.1 for illustrations of these terms):

a) meridians,

b) latitudes,

c) poles,

d) the equator, and

e) great circles.

The goal is for you to make sense of all the functions developed by your class.

Further Investigations

F1. Where do circles on the sphere go to in your flat image? Explain why.

9
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(a) Poles and the equator on a sphere. (b) Poles and latitudes (including the equator) on a
sphere.

(c) Poles and meridians (or longitudes) on a sphere. (d) A great circle, the intersection of the sphere with
a plane through the center of the sphere.

Figure 1.1: Introducing various geometric objects on a sphere: poles, the equator , latitudes,
meridians, and great circles.

10
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1.3 Equi-rectangular Projection

You probably noticed that drawing these images is really difficult. In this section, we will finally
start using cameras to create real 360 degree panoramas.

18. Download one of the following Apps (depending on whether you have an iOS or Android
device) “Google PhotoSphere” (iOS) or “Google Camera” (Android)4. Take a 360 degree
panorama in a spot where there are not many people.

19. How does this App connect to the idea of the Viewing Sphere discussed previously?

20. Notice that the App saves a flat image, as well. Mathematicians call the functions that create
flat images projections. The App uses the so-called equi-rectangular projection. How does
this flat image from the App compare to the projections developed in your class? What is
similar, what is different? Describe everything you notice.

Figure 1.2: Equi-rectangular Projection of D.A.R. State Forest beach.

Figures 1.2-1.3 show the images of the projection created by the App for the D.A.R. State
Forest beach and the Wilson Hall classroom we have seen before.

21. Describe which objects you notice as straight or curved under this new projection in Fig-
ures 1.2-1.3. Are these objects curved or straight in the real world?

22. Predict which straight objects in the real world show up as straight under the equi-rectangular
projection.

23. Predict which straight objects in the real world show up as curved under the equi-rectangular
projection.

4iOS: Google Photo Sphere; Android: https://play.google.com/store/apps/details?id=com.google.

android.GoogleCamera&hl=en---(Androidmaybetter,asitalsocreatestinyplanets)
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Figure 1.3: Equi-rectangular Projection of a Wilson Hall classroom at Westfield State University.

24. Which way do they curve? Explain.

25. Explain why straight objects in the real world can show up as curved or straight under the
equi-rectangular projection.
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1.4 Stereographic Projection

One very ancient idea for creating flat images of features on a sphere is called the Stereographic
Projection . Figure 1.4 shows a transparent sphere sitting on top of a plane, touching the plane
at its South Pole. We want to see where the point P on the sphere ends up when projected onto
the plane. Imagine a light source at the North Pole. A ray of light passing through point P will
intersect with the plane in point Q. This is where the stereographic projection maps the point P .

Figure 1.4: Stereographic projection of a point on the sphere onto the plane.

History (Source: Wikipedia) The Stereographic Projection was known to Hipparchus (An-
cient Greek astronomer, geographer, and mathematician, considered the founder of trigonometry;
90 - 120 BCE), Claudius Ptolemy (Greco-Egyptian writer of Alexandria, known as a mathe-
matician, astronomer, geographer, astrologer; 90 - 168 CE) and probably earlier to the Egyptians.
It was originally known as the planisphere projection . Planisphaerium by Ptolemy is the oldest
surviving document that describes it. One of its most important uses was the representation of
celestial charts. The term planisphere is still used to refer to such charts.

François d’Aiguillon gave the stereographic projection its current name in his 1613 work Optico-
rum libri sex philosophis juxta ac mathematicis utiles (Six Books of Optics, useful for philosophers
and mathematicians alike).

26. Independent Investigation: For the stereographic projection describe in detail what
happens to the following geometric objects (see Figure 1.1 for illustrations of these
terms):

a) meridians,

b) latitudes,

13
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c) poles,

d) the equator, and

e) great circles.

You could use Lenart Spheres and a flashlight to help with some of these investigations.

Cool Thing: Take a look at these amazing spherical sculptures created with a 3D printer: https:
//www.youtube.com/watch?v=lbUOScpu0ws and https://www.youtube.com/watch?v=VX-0Laeczgk.
Notice in the sphere sculpture that is covered with circular shapes (about 2 minutes into the first
video)? What kinds of shadows to they create in the plane? What conjecture would you make
about what circles on the sphere map to in the plane under this projection? Explain.

1.5 Tiny Planets

The “Tiny Planet” App creates another kind of 360 degree panorama; see Figure 1.5. Aren’t they
amazing!

27. Which projection(s) could have been used to create these panoramas? Explain your thinking.

1.6 Student Project

28. Independent Investigation:

29. Take the Google Photo and Tiny Planet Apps and create several 360 degree panoramas.
Try Tiny Planets and Rabbit Holes.

30. What features in the scene make for interesting or beautiful panoramas? Why?

31. Select your favorite panorama and show your artwork to the class.

32. Write an artists statement. “I find this panorama beautiful because ...”

14
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(a) “Tiny Planet” of D.A.R. State Forest beach. (b) “Rabbit Hole” of D.A.R. State Forest beach.

(c) “Tiny Planet” of a Wilson Hall classroom. (d) “Rabbit Hole” of a Wilson Hall classroom.

Figure 1.5: Four tiny planets of the D.A.R. State Forest beach and the Wilson Hall classroom.

15
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Chapter 2

Straight-cut Origami

2.1 The Fold-and-cut Problem

1. Take a piece of paper, fold it up in any way you like, as long as the end result is flat. Now
make one complete straight cut (i.e., a cut along a line). Unfold the pieces, and see what
you get. Try a few examples. Share with your class.

2. Describe a few characteristics that all these shapes have in common.

3. Will any and all shapes obtained by this process have these characteristics? Explain your
reasoning in detail.

4. In general, what types of shapes do you think can be obtained in this way? Be as precise as
you can.

5. What kinds of shapes are not possible? Describe a few examples. Explain why you are
convinced that they are not possible.

In this chapter, we will investigate the Fold-and-cut Problem, sometimes also called the
problem of Straight-Cut Origami: Given a shape, such as those in Figure 2.1, is there a a way
to fold it up so that you can cut it out with a single straight cut? If there is such a way, how
do we actually fold it? How can we describe all the shapes for which this is possible?

Note: For many of the figures in this chapter, the Appendix includes versions large enough for
folding and cutting; see Page 36 and following. Whenever such a larger version exist, we include
a reference in the caption of the small figure. Most of these figures were created using the free
dynamic geometry software GeoGebra; see Section 2.5.

2.2 Erik Demaine

We learned about this problem from a 2005 New York Times article about Erik Demaine, a
mathematician at the Massachusetts Institute of Technology who –then in his early twenties– has

17



DRAFT c© 2017 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

(a) Japanese sangabisi crest (large: Figure 2.16). (b) Whale for Straight-cut Origami (large: Figure 2.29).

Figure 2.1: Two fold-and-cut challenges.

become the leading theoretician in the emerging field of origami mathematics, the formal study of
what can be done with a folded sheet of paper. Much of the material in this chapter is based on
our attempts to understand the mathematics of the fold-and-cut problem as laid out in a series
of papers by Erik Demaine and his collaborators. For more information about these papers and
lectures, see the ”Further Investigations” in Section 2.8.

Here is what Erik Demaine tells us about the history of the problem:

The first published reference to folding and cutting of which we are aware is a Japanese
book, Wakoku Chiyekurabe (Mathematical Contests), by Kan Chu Sen (; - ), published in
1721. This book contains a variety of problems for testing mathematical intelligence. One of
the problems asks to fold a rectangular piece of paper flat and make one complete straight
cut, so as to make a typical Japanese crest called sangaibisi, which translates to “three folded
rhombics.” [See Figure 2.1(a) for a rendition of a sangabisi crest.]

Another early reference to folding and cutting is a July 1873 article National Standards
and Emblems in Harper’s New Monthly Magazine, volume 47, number 278. This article tells
the story about Betsy Ross and her relation to the American flag. It claims that in 1777,
George Washington and a committee of the Congress showed Betsy Ross plans for a flag with
thirteen six-pointed stars, and asked whether she could make such a flag. She said that she
would be willing to try, but suggested that the stars should have five points. To support
her argument, she showed how easily such a star could be made, by folding a sheet of paper
and making one cut with scissors. The committee decided to accept her changes, and George
Washington made a new drawing, which Betsy Ross followed to make the first American flag.

Folding and cutting may have been used for a magic trick by Houdini, before he became
a famous escape artist. His 1922 book Paper Magic (E. P. Dutton & Company, pages 176-
177) describes a method for making a five-pointed star. According to David Lister, this book

18
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appears to have been ghostwritten by another magician, Walter Gibson.
Another magician, Gerald Loe, studied the fold-and-cut idea in some detail; his 1955

book Paper Capers (Magic, Inc., Chicago) describes how to cut out arrangements of various
geometric objects, such as a circular chain of stars.

Martin Gardner wrote about the fold-and-cut problem in his famous series in Scientific
American (Paper cutting, chapter 5 of New Mathematical Diversions (Revised Edition), Math-
ematical Association of America, Washington, D.C., 1995.). Gardner was particularly im-
pressed with Loe’s ability to cut out any desired letter of the alphabet. He was also the
first to state cutting out complex polygons as an open problem. What are the limits of this
fold-and-cut process? What polygonal shapes can be cut out?

19
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2.3 Symmetric Shapes

If you boldly tried to fold the whale shape in order to cut it out with a single straight cut, you
may have realized that this is not so easy. Often in mathematics, when we encounter a problem
that seems too difficult to tackle with the tools we have at hand, we shift to a somewhat easier
problem, in the hope of gaining a deeper understanding of the problem and of learning new tools.
Let us therefore start with some shapes that are less complex and that exhibit some symmetry.

Figure 2.2: Flower with line of symmetry.

Consider the shape shown in Figure 2.2 and the line of symmetry drawn into it. The left
hand side of the shape is (close to) a mirror image of the right hand side of the shape, so that if
you fold the shape along this line of symmetry, the two sides will match. We say that the shape
has reflectional symmetry ; for more on geometry and symmetry, see references [3, 7, 8].

Figure 2.3: Three Geometric Shapes for Straight-cut Origami (large: Figures 2.17-2.19).

Figure 2.3 shows three simple geometric shapes: an equilateral triangle, a square, and a rectangle.

6. Pick one of the three shapes in Figure 2.3. Find a way to fold up this shape so that you
can cut it out with a single straight cut. Once you succeed, clearly mark on both pieces of
paper (the shape and the outside of the shape) the actual fold lines you used. Explain your
strategy.

7. Take a new printout of your shape, draw in all the lines of reflection. What do you notice
when you compare these with your fold lines? Write down everything you notice.

20
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Figure 2.4: Two Star Shapes for Straight-cut Origami (large: Figures 2.20-2.21).

Figure 2.4 shows two stars similar to those that Betsy Ross may have worked with in designing
the American flag: a five-pointed star and a six-pointed star.

8. Find a way to fold up the five-pointed star so that you can cut it out with a single straight
cut. Once you succeed, clearly mark on both pieces of paper (the star and the outside) the
actual fold lines you used. Explain your strategy.

9. Now, find the straight-cut folding for the six-pointed star. Explain your strategy.

10. Take another five-pointed star and shade the interior. As you fold it up again, make note
whether shaded areas get folded onto shaded or unshaded paper (or both). Explain any
patterns you see. Would the result have been the same for the six-pointed star?

11. Take a new printout of the six-pointed star, draw in all the lines of reflection and compare
them with your fold lines. What do you observe? Would the result have been the same for
the five-pointed star?

12. Classroom Discussion: Share your observations about straight-cut folds for symmetric
shapes. Do you feel that you would be able to fold and cut any polygon with at least one
line of symmetry? Try a few examples to check whether your conjecture is correct.

All the shapes discussed in this section are what are called polygons. The word “polygon” derives
from the Greek πoλυσ (polys) meaning “many” and γωνια (gōnia), meaning “knee” or “angle”.
Traditionally, a polygon is a plane figure that is bounded by a closed path or circuit, composed
of a finite sequence of straight line segments (i.e., by a closed polygonal chain). These segments
are called its edges or sides, and the points where two edges meet are the polygon’s vertices or
corners. An n-gon is a polygon with n sides. The interior of the polygon is sometimes called the
body of the polygon.

A regular polygon is a polygon that is equiangular (all angles are equal in measure) and
equilateral (all sides have the same length).

13. When we fold a paper flat and cut along a straight line, will it always separate into two
pieces, or can it result in more than two pieces?

14. When we fold a paper flat and cut along a straight line, will the shape(s) you cut out always
consist of polygons? Show your thinking and explain your reasoning.
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15. Will the resulting shape(s) always be symmetric? Explain.

16. Will the shape(s) you cut out always consists of regular polygon(s)? Explain.
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2.4 Irregular Shapes

We noticed that lines of symmetry are very helpful in folding polygons so that we can cut them
out with a single straight cut. Yet, with shapes that are less symmetric, it is no longer clear how
to proceed.

Figure 2.5: Single Angle for Straight-cut Origami (large: Figure 2.22).

17. Find a way to fold the single angle shape in Figure 2.5. How does the folding of this shape
relate to the work you did with the symmetric shapes in Section 2.3? Explain.

You may find the following series of investigations more challenging than previous ones. It may
take you more than just one attempt with each shape, sometimes many more. You may observe
that using ideas gained from working with symmetric shapes may not be enough to fold these
irregular shapes. Do not be discouraged. Where could you go for some new ideas? Do not discard
the results of your attempts. Instead, use them as resources to analyze carefully what the results
look like, and why they do not completely accomplish the task. Also keep an eye on what happens
to interior and exterior areas when folding.

Mathematicians have a name for the line (or line segment) that divides an angle into two equal
parts: they call this an angle bisector.

18. Find a way to fold the double-angle shape in Figure 2.6.

19. Find a way to fold the irregular triangle in Figure 2.7 (three sides all of different lengths).

20. Classroom Discussion: Other than angle bisectors, what other kinds of lines did you use
to fold up the shapes in Figure 2.6 and Figure 2.7? How would you describe those?

21. An angle bisector is a line of symmetry for one angle. Is it also a line of symmetry of the
entire shape? What are the consequences of folding along an angle bisector all the way
through the shape?
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Figure 2.6: Double Angle for Straight-cut Origami (large: Figure 2.23).

Figure 2.7: An Irregular Triangle for Straight-cut Origami (large: Figure 2.24).

Figure 2.8: An Irregular Quadrilateral for Straight-cut Origami (large: Figure 2.25).

22. Find a way to fold the irregular quadrilateral in Figure 2.8 (four sides all of different
lengths).

23. Did your observations about folding the double-angle, or the irregular triangle, help you in
folding the irregular quadrilateral? Explain.

24. Were there any new ideas that you used for this shape? Explain.
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25. Classroom Discussion: Given a line ` and a point P not on `, we can construct the
perpendicular. This is a line through P which makes a 90◦ angle with `. Look back at
your folding patterns and find perpendiculars. What do you notice?
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26. Next consider the shapes in Figure 2.9. In what ways are these shapes different from ones
you have considered in this section so far? Explain.

27. Create three geometric shape of your own that belong to this new type. Explain why each
belongs to this new type.

(a) Quadrilateral (large: Figure 2.26). (b) Pentagon (large: Figure 2.27).

(c) Hexagon (large: Figure 2.28).

Figure 2.9: Three Shapes for Straight-Cut Origami.

28. Find a way to fold the quadrilateral in Figure 2.9(a) so that you could cut it out with a
single straight cut.

29. Find a way to fold the pentagon in Figure 2.9(b) so that you could cut it out with a single
straight cut.

30. Find a way to fold the non-convex hexagon in Figure 2.9(c) (six sides, segments between
some of the vertices fall outside the shape) so that you could cut it out with a single straight
cut.

31. Once you know how to fold and cut these shapes, make another folded copy of each but do
not cut it out. Carefully unfold it, making sure to note which of the fold lines were used in
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your final version, and which were not. Clearly mark all the fold lines that were needed for
your final version.

32. Writing Assignment: Using the marked and labeled shapes you created in Investiga-
tion 31 as resources, clearly describe a geometric way in which these folds relate to the
original lines of the polygon. Write a complete and careful summary of your observations
and findings.
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2.5 Dynamic Explorations

We have now seen how certain geometric lines (angle bisectors and perpendiculars) relate to certain
fold lines in straight-cut origami. In this section, you will use the dynamic geometry software called
GeoGebra. The ability to dynamically change the shape may allow you to more fully explore
the relationship between a shape and its straight-cut fold lines.

33. Download the free GeoGebra software from http://www.geogebra.org/. Figure 2.10
shows a screenshot of a GeoGebra session editing the sangabisi crest. The main window
contains an image of the shape which you can modify by clicking and dragging. A row
of square icons along the top gives access to various geometric tools; hovering over them
with the mouse cursor will pop up the names of the tools. A complete list of “free” and
“dependent” objects (points, lines, etc.) is shown along the left. An input bar at the bottom
accepts direct typed input. Objects may be manipulated using either one of these interfaces.

34. Play around and create a few shapes, using the following tools: New Point, Line Through
Two Points, Segment Between Two Points, Perpendicular Line, Angle Bisec-
tor, Intersect Two Objects; you may need to click on the little triangles in the bottom
right corner of each of the icons in order to see some of these options.

35. Choose the Move tool (first icon on the left) to move some of your lines or points. Explore
how to save, export and print your workbook.

36. In order to change basic aspects of your objects, such as the line thickness or color, right-click
on the object and choose Object Properties. You can also switch off labels this way. Full
documentation is available via Help.

37. Create an irregular quadrilateral similar to that in Figure 2.8 and draw in the geometric lines
that tell you where it needs to be folded for straight-cut origami. Change your quadrilateral
using the Move tool and explore how the fold lines change as a result. Write down your
observations.

38. Print out your quadrilateral and see whether you can fold it up. Compare whether your
printout correctly predicted all the fold lines you find. Write down your observations.

39. Independent Investigation: Now create several shapes of your own. Explore how to
construct as many of the fold lines as you can. Share your shapes with the class.
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Figure 2.10: GeoGebra screenshot showing the sangabisi crest.
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2.6 Further Investigation: Whale

Here is a challenge: can you fold up the whale in Figure 2.11 so that you can cut it out with a
single straight-cut?

Figure 2.11: Whale for Straight-cut Origami (large: Figure 2.32).

As usual in mathematics, if a problem is really difficult, we try to break it down into smaller
problems that are hopefully easier to solve. In the following investigations, we first look at three
parts of the whale separately: the head, the middle including the fins, and the tail, respectively
are shown in Figures 2.12(a)-2.12(c). Feel free to use GeoGebra to investigate potential fold lines
for these shapes. If you feel bold, skip the separate parts of the whale and jump right in and fold
the full whale.

F1. Figure 2.12(a) shows the head of the whale. Find a way to fold it up so you could cut it
out with a single straight cut.

F2. The whale’s middle section including the two fins is shown in Figure 2.12(b). Find a way
to fold it up so you could cut it out with a single straight cut.

F3. Now consider the whale’s tail in Figure 2.12(c). Find a way to fold it up so you could cut
it out with a single straight cut.

F4. For any of these investigations, did you need to develop any new ideas beyond the ones
you’ve seen before? Explain.
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(a) Whale Head
(large: Figure 2.30).

(b) Whale Middle
(large: Figure 2.31).

(c) Whale Tail (large: Figure 2.32).

Figure 2.12: Three Parts of the Whale for Straight-Cut Origami.

F5. Based on your understanding of the three separate pieces, find a way to fold up the
complete whale; see Figure 2.11.
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2.7 Further Investigation: Eric Demaine’s Shapes

Eric Demaine has a few shapes online at

http://erikdemaine.org/foldcut/examples/.

F6. Try to fold and cut a few of these. Do as many as you like. Describe how these models
relate to your investigations in this chapter.

2.8 Further Investigation: The Whole Story – Paper, Video,
and Books

Resources: Erik Demaine’s paper “Folding and Cutting Paper”– co-authored with Martin De-
maine and Anna Lubiw – explores and explains many of the mathematical ideas behind finding all
the fold lines; see http://erikdemaine.org/papers/JCDCG98/paper.pdf. In addition, you can
find a video of a lecture by Erik Demaine online where he talks about this material in more detail;
see http://courses.csail.mit.edu/6.849/fall10/lectures/L07.html.

The full story is laid out in more detail in two books co-authored by Eric Demaine and Joseph
O’Rourke: a more expository and easier overview can be found in Chapter 5 of “How To Fold
It”, [2]; the dense and full proof is contained in Chapter 17 of “Geometric Folding Algorithms” [1].

F7. Based on what you learn in the paper, the video and/or the chapters in the books, describe
the following concepts and how they relate: Straight Skeleton Graph; Perpendicular Graph;
Corridors. How do these tools and concepts show why (almost) any polygonal shape can be
folded and cut out in a single straight cut.
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2.9 Cool Things: Origami Art

Creativity is the process of making choices. The most important ones inspire us to begin and
let us know when we are done. Sometimes we take shortcuts and sometimes we take the long
way. Either way, the choice is up to you.

Kevin Box (American Origami Artist; - )

What inspires me about origami is its simple metaphor for life. We all begin with a blank
page, what we choose to do with it is up to us and the possibilities are endless.

Kevin Box (American Origami Artist; - )

Figures 2.13-2.15 display photos from the Naples Botanical Garden in Naples, Florida, of
beautiful origami art by Kevin Box (http://outsidetheboxstudio.com/). Many thanks to our
retired colleague Ken Haar for sharing these photographs!

(a) “White Bisons” by Kevin Box and Dr.
Robert J. Lang, 2011-2012.

(b) “White Cranes,” Kevin Box.

Figure 2.13: Origami Art by Kevin Box and collaborators.

The description for the “White Bisons” origami art by Kevin Box and Robert Lang shown
in Figure 2.13(a) reads: “This sculpture was the first collaboration between Box and the world-
renowned origami artist Dr. Robert J. Lang. Box was inspired by the stories he heard growing up
in Oklahoma of a white bison, a sacred animal that brought peace and prosperity to the Native
American people. Like the origami crane [see Figure 2.13(b)], the white bison is a symbol of
peace. Dr. Lang designed and folded the bison from a single uncut square of paper. He employed
a technique called “duogami,” which uses origami paper that has a different color on each side. In
this case, one side is white and the other side is silver. The end result is a white bison with silver
eyes, horns, and hindquarters.”
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(a) “Balancing Act,” Kevin Box and Te Jui Fu,
2014.

(b) Tower of Cranes, Kevin Box.

(c) Butterfly, Kevin Box. (d) Birds in flight, Kevin Box.

Figure 2.14: Origami Art by Kevin Box and collaborators.
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The description for the “Balancing Act” origami art by Kevin Box and Te Jui Fu (2014) shown
in Figure 2.14(a) reads: “To cut or not to cut–this is the question for many paper folders. Origami
usually begins with a square piece of paper that can be folded into an endless array of forms. This
sculpture demonstrates the exquisite balancing act between the pure form of the origami crane,
folded from a single, uncut square of paper, and the elegant precision of the kirigami horse, created
using only four cuts in the paper.”

Figure 2.15: “Painted Ponies,” Kevin Box and Te Jui Fu, 2005-2007.

The description for the “Painted Ponies” origami art by Kevin Box and Te Jui Fu (2005-2007)
shown in Figure 2.15 reads: “This is the first collaboration between Box and Chinese origami artist
Te Jui Fu. They chose to use the same colorful papers that are often used in origami, as well as
another Japanese paper-folding technique called “kirigami,” which means “cutting paper.” Here,
scissors are used to make four cuts in the paper square to more easily achive the details of the
pony’s legs and ears. The symbol on the back of the large pony is a collaborative signature. The
Chinese character of Te Jui’s last name, Fu, means “teacher” in English, and the box that encloses
the character represent’s Kevin Box’s last name.”
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2.10 Appendix: Large Shapes

Figure 2.16: Japanese Sangabisi crest.
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Figure 2.17: Equilateral triangle for Straight-cut Origami.
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Figure 2.18: Square for Straight-cut Origami.
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Figure 2.19: Rectangle for Straight-cut Origami.
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Figure 2.20: Five-pointed Star for Straight-cut Origami.
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Figure 2.21: Six-pointed Star for Straight-cut Origami.
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Figure 2.22: Single Angle for Straight-cut Origami.
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Figure 2.23: Double Angle for Straight-cut Origami.
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Figure 2.24: An Irregular Triangle for Straight-cut Origami.
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Figure 2.25: An Irregular Quadrilateral for Straight-cut Origami.
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Figure 2.26: An Irregular Quadrilateral for Straight-cut Origami.
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Figure 2.27: An Irregular Pentagon for Straight-cut Origami.
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Figure 2.28: An Irregular Hexagon for Straight-cut Origami.
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Figure 2.29: Whale for Straight-cut Origami.
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Figure 2.30: Whale Head for Straight-cut Origami.

Figure 2.31: Whale Middle for Straight-cut Origami.
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Figure 2.32: Whale Tail for Straight-cut Origami.
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Chapter 3

The Magical Möbius Band:
Cultural Icon and Engineering
Marvel

Symbols make us think.
Symbols can change the world.
And sometimes, symbols are all we have,
To help us maintain our resolve.
Even in our darkest and our most tragic days.
Peter W. Schroeder (German Journalist; - )1

3.1 Object of This Chapter

In this chapter we will study one of topology’s most well-known objects - the Mbius band. The
Mbius band is a magical mathematical object which is simple enough that it can be made and
enjoyed by any kindergartener equipped with scissors, tape and a strip of paper. But it illustrates
many deep mathematical principles.

It is also a beautiful mathematical object which occurs repeatedly in art and sculpture.

3.2 Topology

Topology is, in some sense, a special kind of geometry. It is a very basic kind of geometry. Jean
Piaget (Swiss Psychologist; 1896 - 1980) tells us, “A child[s]... first geometrical discoveries are
topological... If you ask him to copy a square or a triangle, he draws a closed circle.” Topology is
fundamental to contemporary mathematics, yet very few people know anything about it.

One nice way to describe topology is to compare it to geometry - something we know. To do
this we think about geometry in a different, more modern way: in terms of its transformation

1From the documentary Paper Clips.
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groups and invariants.
In standard Euclidean geometry - the geometry we learned in school and that we use when

we measure distances, areas, angles and the like - our transformations include translations and
rotations. The two triangles in Figure 3.1 are congruent because you can simply translate the
one on the left so it is concurrent with the one on the right. Carpenters use a sliding T bevel
like that pictured in Figure 3.2 to measure/transfer angles because once the bevel is firmly set, no
matter where they move it through space it will find/create congruent angles.

Figure 3.1: Congruent triangles.

Figure 3.2: Carpenter’s sliding T bevel.

Each of the quantities length, area, and angle measure are geometrically invariant - they do
not change under the transformations of Euclidean geometry.

While this seems both obvious and necessary, there are many other settings in which this is
not what is desired. Consider, for example, cartography , the science of map making. We are
all familiar with the Mercator projection map of the world, an example of which is shown in
Figure 3.3.

Of course angles are invariant in Mercator projection maps - they would not be much use
to sailors, pilots, or hikers if they could not use a compass for their headings and bearings. To
signify that the angles are preserved in our map, our transformation from the spherical earth to
the flat map is called conformal . Unfortunately, areas are certainly not preserved. Greenland is
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Figure 3.3: Mercator projection map of the world.

not nearly as big as it appears on a world map, Africa not nearly so small. Something must be
distorted to form a flat map from a round earth.

Depending on our needs we can choose what quantities remain invariant under our mapping.
For example, we can sacrifice angles to keep areas invariant if we want to focus on sizes of land
masses. One such map projection is called the Gall-Peters projection of the world which is
pictured in Figure 3.4.

We may also choose to deform our map to highlight non-physical aspects of our world’s com-
position. For example, the world map in Figure below is a population cartogram - the relative
size of each country is based on its population.
Notice how huge India and Japan are relative to their geographic size. And, the tremendous
population between them, where parts of the former Soviet Union are on a Mercator projection
map, is China!

Of course, you can represent many different political, sociological, humanitarian, or economic
issues via cartograms of this type. Software to create cartograms is available online from major
geographic information system (GIS) organizations such as the Environmental Systems Research
Institute (ESRI). There are also wonderful books, including The Atlas of the Real World: Mapping
the Way We Live and Portraits of the Earth: A Mathematician Looks at Maps.

Similar distortions generate the homunculus which is used in psychology show deformations
of the human body that represent the prevalance of different physiological mechanisms. (See the
Connections section later for details.)

We’ve emphasized cartograms because they illustrate perfectly key principles of topology. Car-
tograms distort the typical shapes of countries. Yet all countries remain and no new countries
have been added. Two countries that share geographic borders share borders on the cartogram,
those that do not share borders geographically do not share borders on the cartogram.
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Figure 3.4: Gall Peters map of the world.

This is the same with is topology which is often called “rubber sheet geometry”.

Topological transformations are those transformations which involve shrinking, stretching,
bending, or twisting (as if the objects were made out of rubber or clay or string) yet do not involve
cutting, separation, gluing, or joining objects or parts of objects together, nor do they involve
collapsing an object down into a point.

If you can transform one object into another following these rules, the objects are called topo-
logically equivalent . Among the topological invariants of an object are the number of holes,
the number of boundary components, and whether the object is connected.

Examples:

• Imagine the letters L and N being formed out of a flexible, malleable material like elastic
string. It is an easy matter to topologically deform the L into the N, perhaps by first
straightening out the L. Hence, L and N are topologically equivalent. Each is simply a line
with two endpoints as boundary components.

• Similarly, Y and E are topologically equivalent. The Y can be topologically deformed into
the shape ` simply by rotating the upper “arms” clockwise. Then it is simple matter to
stretch the ends out to form the E. Each of these letters has three endpoints as boundary
components.

• On the other hand, the letters F and P are not topologically equivalent. Gluing is not allowed
in topology so there is no way to form the loop of the P from the F. Another way to see that
they are not topologically equivalent is that F has three endpoints as boundary components,
P just one. Alternatively, P has a loop while F does not.

In Investigations Investigation 2 - Investigation 5 you are encouraged to determine how to
partition (i.e. group) the alphabet shown in Figure 3.6 into topological equivalence classes.
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Figure 3.5: Population cartogram of the world.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z.

Figure 3.6: The sans serif font Avant Garde.

3.3 A Bit of Basic Topology

We start with a joke as a warm-up:
Question: What do you call somebody who cannot tell their coffee cup from a doughnut?
Answer: A topologist.

1. Explain this joke by describing the topological equivalence of a coffee cup to a doughnut.

2. Determine which letters in Figure 3.6 are topologically equivalent to the letter L.

3. Determine which letters in Figure 3.6 are topologically equivalent to the letter E.

4. Determine which letters in Figure 3.6 are topologically equivalent to the letter A.

5. The collections in Investigation 2 - Investigation 4 are called the topological equivalence
classes of L, E, and A respectively. Partition the remainder of the alphabet Figure 3.6 until
each of the letters has been accounted for by an equivalence class.

We now turn to the number of sides and edges - two topological invariants - of different objects.
A typical sheet of paper is rectangular, so it has four sides, right? This is certainly the case

if you are speaking geometrically. But here we working topologically and we need to think of the
other meaning of the term “sides” - the number of “faces” a surface has. So, as illustrated by the
face down icon in Figure 3.7, we will use the word side in the sense that a sheet of paper has
two sides.

What about edges?

6. Explain why all rectangles, pentagons, hexagons, octagons, and circles are topologically
equivalent.
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Figure 3.7: Page down icon.

7. If the term edge is to define a topological invariant of objects, explain why rectangles, pen-
tagons, octagons, and circles must have the same number of edges.

Because a circle has a boundary which is composed of one continuous component we say that
it has one edge.

8. How many edges does a typical funnel have? Explain.

9. Name, describe, or draw a surface/object that has three edges.

3.4 The Place of Topology in Modern Mathematics

The distinguished Raymond Wilder (American Mathematician; 1896 - 1982), who was President
of both the Mathematical Association of America and American Mathematical Society as well as
a member of the National Academy of Sciences, said of topology:

Probably no branch of mathematics has experienced a more surprising growth than
has... topology... Considered as a most specialized and abstract subject in the early
1920’s, it is today an indispensable equipment for the investigation of modern mathe-
matical theories.

Hermann Weyl (German Mathematician; 1885 - 1955), the great German mathematician
who escaped Germany with his Jewish wife and took refuge with Albert Einstein and many other
prominent scientists at the Institute for Advanced Study at Princeton University during World
War II, remarked more comically, “In these days the angel of topology and the devil of abstract
algebra fight for the soul of every individual discipline of mathematics.”

Like all areas of mathematics, topology has its own wealth of open problems. One of its most
central problems, the Poincare conjecture, was recently solved by the Grigori Perelman (Russian
Mathematician; 1966 - ). He did little to publicize this landmark achievement in the early part of
this decade. Once his work was discovered he won many awards, including the 2006 Fields Medal
(the highest honor in mathematics) and a $1 Million Millennium Prize. He deferred both, began to
question the ethical standards of several mathematicians who had worked in the same area, went
into seclusion, and is reported to have quit mathematics. Perleman’s discovery and the resulting
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controversy surrounding the latter developments received quite a bit of press, including a page one
Science Times section story in the New York Times, a lengthy The New Yorker article and an
uproarious Cobert Report .

For more on topology in general, see Discovering the Art of Knot Theory in this series or the
book Knots and Surfaces: A Guide to Discovering Mathematics which is quite similar to the books
in this series and which also deals with topology.

3.5 Basic Möbius Topology

Mathematics is something that one does.

E.E. Moise (American mathematician; 1918 - 1998)

Required Supplies: You will need the following physical materials for the
investigations

• Several dozen strips of paper approximately 1− 3
4 of an inch wide. Gener-

ally, strips of 11 inches in length work well, but you may also find longer
ones helpful for the independent investigation.

• Transparent tape

• Scissors

Let’s make some objects and consider their topological properties.
Take one of your strips of paper, bring the ends together, and then tape the two ends together.

Your object, called a cylinder or cylindrical band, should appear as pictured on the left in Figure
3.8.

Figure 3.8: Cylindrical band and Möbius band.

10. How many sides does your cylindrical band have? Explain.

11. How many edges does your cylindrical band have? Explain.
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Take another strip of paper and bring the ends together, as you did in making a cylinder. This
time, before taping the ends together, flip one end over by rotating it through 180 degrees. Now
tape the ends together.

You have created a Mbius band, like the one pictured on the right in Figure 3.8.
Before considering the topological properties of the Mbius band we have two things to take

care of. First, some people call the twist we made in constructing the Mbius band a half-twist for
obvious reasons. However, because we have no reason to consider any other type of twists, we will
simply call it a twist consistently throughout. Also, we twisting we have a caution:

Caution: When creating Mbius bands it is critical that you first bring the ends together to form
a cylinder and then add the twists. If you twist before bringing the ends together then your hands
are often in a position that results in an extra twist being added or deleted as you bring the ends
together.

Returning now to the Möbius bands topological properties. . .

12. How many sides does the Mbius band have? Explain.

13. How many edges does the Mbius band have? Explain.

14. Are the results above surprising? Explain why or why not.

Here and below determining the number of twists, the number of sides, and the number of
edges bands have is central to the next two sections. So, while you work on Investigations 15 - 20,
pay particular attention to these issues.

15. Carefully describe the method you use to determine the number of twists in a band, the
number of sides a band has, and the number of edges a band has.

Of course, there is no reason to stop after making a band with a single twist. We might as well
see what happens as we add more twists. We will call a Möbius band created from n twists an
n-Möbius band.

16. Create a 2-Möbius band. Can you see the two twists clearly? How many sides does it have?
How many edges? Explain.

17. Create a 3-Möbius band. Can you see the three twists clearly? How many sides does it have?
How many edges? Explain.

18. Create a 4-Möbius band. Can you see the four twists clearly? How many sides does it have?
How many edges? Explain.

19. Create a 5-Möbius band. Can you see the 5 twists clearly? How many sides does it have?
How many edges? Explain.

20. Make a conjecture about the numbers of sides and edges a general n-Möbius band will have.
How certain are you of the validity of this conjecture? Explain.

While it is unlikely that you have heard of the Möbius band, you will quickly see that it plays
a central role in many contemporary symbols that we see around us every day. Moreover, it has
important applications in diverse areas. We provide several examples here to give you some sense
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of how pervasive the Möbius band is as well as to give you some idea of the topics you’ll be
investigating here.

Figure 3.9 is a “Möbius bench” at an outdoor mall in Pasadena, California. There is an indie
rock/electronic pop band from Shutesebury, MA called, you guessed it, “The Möbius Band.”
While not on a major commercial label, they are well-known enough to have an allmusic.com
listing among other things. Figure 3.10 shows one of the many “Jewish love pendants” that can
be purchased from catalogs and online shops. We have been unable to determine whether there is
any historical connection between the Möbius band and Jewish culture. Please let us know if you
find one. Figure 3.11 is a napkin ring that was found advertised in a newspaper flyer for a chain
of houseware/linen stores.

Figure 3.9: Möbius bench by Vito Acconci in Pasadena, CA.

Figure 3.10: “Jewish infinity love” pendant.

Fiber artists also seem to be particularly fond of Möbius bands. You can find dozens of different
sets of instructions on the Internet for knitting a Mbius scarf. They can be used as capelets, neck
warmers, or a combination scarf/ear warmer where the twist provides a subtle diversion at the
neckline of each of these objects. In the beautiful book Making Mathematics with Needlework
Amy F. Szczepański contributes a whole chapter to “Quilted Möbius bands.”
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Figure 3.11: Möbius napkin ring.

Here’s an art project we made up. You have probably had the experience of making paper
chains as a child. Many teachers use them in novel ways as teaching tools, even in mathematics
classes. We give this practice a mathematical twist, excuse the pun, requiring our future teacher
candidates to make paper chains out of Möbius bands! It’s a simple, wonderful way to introduce
compelling mathematics to children of any age. If you try it you will see that regardless of the
medium, Möbius chains are more aesthetically pleasing than their cylindrical counterparts. (See
Figure 3.12.)

Figure 3.12: Möbius chains as garland.

The Möbius band has even inspired a Möbius Recycling Education Program complete with a
Möbius mascot! Designed by Susan Schaefer for Browning Ferris Industries, this program has been
used in 30,000 classrooms in 87 countries and has won numerous awards. This program and its
materials remain available online. [Mob]

The latter half of this chapter was inspired by a somewhat random Möbius sighting. As the
first author was leaving a theatre with his family after having watched the moving Holocaust
documentary Paper Clips, described below, they were struck by the beautiful image emblazoned
on the movie poster which is shown in Figure 3.14.

They quickly conjectured that the two triangles which make up this symbol must be some sort
of Möbius bands. This began a wonderful exploration of paperclip topology. It was a challenge
with great mathematical and artistic rewards - we think you will enjoy rediscovering it.

21. Find and describe some of your own ”Möbius sightings” that are different than those de-
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Figure 3.13: The Möbius mascot.

scribed in this chapter.

3.6 Möbius Magic

In Section 3.3 we made many different Möbius bands. If we begin dissecting these Möbius bands
we will find many more surprises.

Preparation: You will need to divide strips into several equal pieces by carefully drawing equally
spaced lines along the lengths of the strips. You will need to make two of each of the following:

• strips divided equally into half by one line,

• strips divided equally into thirds by two lines,

• strips divided equally into fourths by three lines, and,

• strips divided equally into fifths by four lines.

22. Make a cylinder out of one of the strips that has been divided in half. What do you think
will be created if you cut along the entire length of the line that divides it in half? Explain.

23. Cut along the line and precisely describe the result. Do you have any idea why this happened?
Explain.

24. Now make cylinders out of one of each of the strips that have been divided in thirds, fourths,
and fifths. What do you think will be created if you cut along the entire length of each of
the lines that divide them into equal sections? Explain.
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Figure 3.14: Poster for the documentary Paper Clips.

25. Cut along the lines and precisely describe the results. Do you have any idea why this
happened?

26. Make a Möbius band out of the other strip that has been divided in half. What do you think
will be created if you cut along the entire length of the line that divides it in half? Explain.

27. Cut along the line and precisely describe the result. Do you have any idea why this happened?
Explain.

Caution: Here and below you will need to use enough tape to
sufficiently secure the ends of the strips when making the Mbius
bands. If you don’t, as you dissect them they will fall apart.

28. Make a Möbius band out of the other strip that has been divided into thirds. What do you
think will be created if you cut along one of these lines and continue cutting until you have
returned to your starting point? Explain.

29. Cut along the line until you return to your starting point and precisely describe the result.
Do you have any idea why this happened? Explain.

30. Make a Möbius band out of the other strip that has been divided into fourths. What do you
think will be created if you cut along one of the lines closest to an edge and continue cutting
until you have returned to your starting point? Explain.

31. Cut along the line until you return to your starting point and precisely describe the result.
Do you have any idea why this happened? Explain.

32. Now cut along the entire length of any remaining lines and precisely describe the result.

Comment: You should see that things are much more interesting than in the cylindrical case.
To precisely describe the result you should include the number of bands created, the number of
twists in each of these bands, the relative lengths and widths of these bands, whether they are
linked or knotted together, and any other salient features you might find.
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33. Make a Möbius band out of the other strip that has been divided into fifths. What do you
think will be created if you cut along one of the lines closest to an edge and continue cutting
until you have returned to your starting point? Explain.

34. Cut along the line until you return to your starting point and precisely describe the result.
Do you have any idea why this happened? Explain.

35. Cut along the entire length of any remaining lines and precisely describe the result.

36. You should see patterns forming. State a conjecture which describes the result of cutting
along one of the lines closest to an edge and continuing to cut until you have returned to
your starting point on a Möbius band created from a strip which has been divided into m
equal sections.

37. Similarly, state a conjecture which precisely describes the result of cutting along the entire
length of all of the lines on a Möbius band created from a strip which has been divided into
m equal sections.

38. In the investigations above we dissected the Möbius bands starting our cuts on lines closest
to the edge(s) and later cutting along other lines. If we started with other lines would the
final results be any different? Explain.

3.7 History of the Möbius Band

We hope that this is beginning to feel like a puzzle of sorts, something worthy of more investigation.
Before we continue, you might be interested to know some history of this curious mathematical
object.

The Möbius band was invented in 1858. The time was apparently ripe for its invention as it
was discovered independently by both Johann Benedict Listing (Czech Mathematician; 1808 -
1882) and August Ferdinand Möbius (German Mathematician and Astronomer; 1790 - 1868).
Obviously named after the latter, the Mbius band was first described in respective papers published
in 1861 and 1865.

Surprising Möbius band properties, like those we discovering here, have long been popularized.
While the book Möbius and His Band [Fau] might seem to be a book about the Möbius band
itself, it is really, as the subtitle tells us, a book about the important impact of Möbius and his
German contemporaries on nineteenth century mathematics and astronomy. Perhaps surprisingly,
the first full-length book on the Möbius band just appeared only in 2006: Clifford Pickover’s
wonderful The Möbius Strip: Dr. August Möbius’s Marvelous Band in Mathematics, Games, Lit-
erature, Art, Technology, and Cosmology [Pic]. If you are eager to learn more about the Möbius
band’s ubiquitous role in mathematics as well as its many occurrences in literature, the world of
art, and technology of all sorts, you are encouraged to read this fine book.

OK, so now lets get back to unlocking the secrets of this puzzle. . .

3.8 A Calculus of Möbius Dissections

In Section 3.6 you discovered a pattern that describes what happens when you dissect both
cylinders and Möbius bands created from strips divided into 2, 3, 4, . . . equal sections. But what
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happens when you dissect a 2-Möbius bands in this same way? And what happens with a 3-
Möbius bands? 3- Möbius bands? And what about the general case, what happens when you
dissect the general n-Möbius band in this same way?

This is your challenge for this section.

Before you continue your investigation we provide a few notes which might help you.

Educational Notes:

1. Completing this investigation will take quite a while - as long as a few hours. You will have to
experiment dissecting many different Möbius bands.

2. It will be helpful to compare your work with others to help catch mistakes that might disrupt your
search for useful patterns.

3. Think critically about what values of n and m might provide useful information.

4. Think about effective ways to organize your work.

5. As the number of twists and the number of equal sections increase the results of your dissections
will become more complex. It is often helpful to use longer bands to help ease your construction
and analysis. It also helps to have peers to help hold the bands and/or count the twists.

So now it’s time for you to get to work. Here is the main focus of this section:

Independent Investigation: Determining a Calculus of
Möbius Dissections
Completely characterize the result of dissecting an n-Möbius band created from a

strip divided into m equal sections.

Get started and then come back if you need some help. . .

You’re back. Most of our students make quite good progress for a while, but because this is a
fairly big task they often need some help. So we have a few other notes that might be helpful now
that you have worked on this for a bit.
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Mathematical Notes:

1. Mathematicians are picky about their use of notation, but their consistency and organization are
often quite helpful. Here we have used the variable n to stand for the number of twists in our
Möbius bands and the variable m to stand for the number of equal sections the strip used to make
our Möbius band has been divided into. The investigations we did above correspond to n = 0 and
m = 2 (24 and 25), n = 1 and m = 2 (26 and 27), n = 1 and m = 3 (28 and 29), etc.

2. Remember as you work that the number of bands created, the number of twists in each of these
bands, the relative lengths and widths of the bands, and whether the bands are linked or knotted
together are all important.

3. The relative lengths and widths of the bands that are created in the dissection is what’s important,
not their actual dimensions. For ease of reference, it makes sense to refer to the length and width of
the original Möbius band by L and W respectively.

4. If your bands become knotted it is important to note that they are knotted. However, you are
not expected to identify the type of knot. Identifying and classifying knots is mathematically and
historically a very interesting part of topology which is at the heart of Discovering the Art of Knot
Theory for those of you that are interested in learning more.

5. As the resulting dissections “grow” knots or even become knotted together it becomes difficult to
count the number of twists directly. While topologists do not generally allow cutting or pasting, they
do have forms of surgery they practice. Carefully holding an untwisted section of a band between
your left and right hand, a peer may cut the band, spread it apart to allow knotted sections of this
or other bands to fall between the cut and then tape the cut sections together again. This surgery
will help you gradually unknot things without introducing any new twists - if you are careful - and
thereby allowing you to analyze configurations that otherwise would be inaccessible.

6. Similarly, if you have precisely described one band in a looped or knotted structure, you may simply
excise it via surgery without affecting the properties of the remaining bands.

You’re back again. Are you done? Here’s one way to check.

Am I Done?
You are likely done if you can quickly answer each of the following questions:

1. What is the result of dissecting a 27- Möbius band created from a strip divided into 139
equal sections?

2. What is the result of dissecting a 59- Möbius band created from a strip divided into 18 equal
sections?

3. What is the result of dissecting a 156- Möbius band created from a strip divided into 93
equal sections?

4. What is the result of dissecting a 234- Möbius band created from a strip divided into 5,322
equal sections?

Having completed this investigation you might wonder about the title we’ve given it. The term
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calculus is often used to refer to the mathematical fields of differential calculus and integral calculus
that were independently invented by Isaac Newton (English Mathematician and Physicist; 1642
- 1727) and Gottfried Wilhelm Leibniz (German Mathematician and Philosopher; 1646 - 1716)
and which remain one of the most fundamental descriptive tools used by human beings to describe
change over time. When you hear about AP Calculus in high school or Calculus in college, this
is what is being referred to. If you are interested in learning more about these subjects please see
Discovering the Art of Calculus in this series.

But why’d we use the term calculus here?
The word calculus actually has a broader meaning - “a method of computation or calculation

within a symbolic system.” This meaning comes from the Latin root calculare which means to
calculate. One uses the phrase the calculus to differentiate the field made up of differential and
integral calculus from other calculi such as propositional calculus which is a branch of mathematical
logic.

39. Using this broader meaning, explain why it is appropriate for our Independent Investigation
to be called a “Calculus of Möbius Dissections.”

40. Now that you have a calculus of Möbius dissections, use it to explain why the order of the
cuts (considered in Investigation 38) doesn’t matter.
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3.9 Möbius Band Applications

One application of the Möbius band is as a machine belt connecting a motor to a component to
be rotated. Used in many machine shops, this application of Möbius bands was patented by B.F.
Goodrich in 1957. [Gar2, p. 129]

41. Why would a Möbius belt be better than a cylindrical belt for use in machine shops?

Numerous other applications of the Möbius band are can be found and many are included in
[Pic]. We include one more application here as it leads directly to the next model we will create.

Take two of your paper strips. Make two Möbius bands, each with a single twist. However,
give one band a right-hand twist while you give the other one a left-hand twist. Don’t worry about
which is the right-twist and which is the left-twist, just make sure that once they are completed
they appear to be fundamentally different Möbius bands. (See e.g. Fig. 15.) We’d like to see how
these two Möbius bands are related.

42. Can you transform one of your Möbius bands into the other using translations, rotations, or
the malleability of the paper?

43. Now consider the reflection of one of these Möbius bands by viewing it in a mirror. What
do you notice?

Mathematicians have terms that describe the properties you have just seen:
A geometric object is called chiral if it cannot be transformed into its mirror image using rotations
and/or translations in the ambient space in which it is considered. A chiral object and its mirror
image are called enantiomorphs or enantiomers.

Since chirality is a geometric principle, involving only rotations and translations, we will stop
thinking about topology for the remainder of this section.

Here’s another example. As a rigid geometric object in two dimensional space (e.g. written

on a piece of paper), the symbol 	 is chiral. 	 and � are enantiomorphs. Notice that if

we considered 	 as a ridig geometric object in three dimensional space it would no longer be
considered chiral.

44. For each of the letters given below, exactly as they appear in the given typeface, draw a
mirror image:

A B C D E F G H I J K L M N O P Q
R S T U V W X Y Z.

45. Use Investigation 44 to determine which of the letters shown there, in the given typeface,
are chiral in two dimensions. (Hint: There are 12.)

46. Show how you could make very minor modifications to the characters L and Q so they were
no longer chiral.

47. Find some everyday objects that are chiral in two or three dimensions. Describe them and
how you know they are chiral.
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By now you may be wondering what the big deal about chirality is. It turns out to be important
in many areas, including at the molecular level. It was first observed by Louis Pasteur (French
Chemist and Biologist; 1822 - 1895). Topological issues such as chirality are studied throughout
chemistry and molecular biology - particularly in the area of DNA. [Fla, p. ??]

A specific example arose in the late 1950’s when women were given the drug Thalidomide to
combat morning sickness. Horrifically, this caused thousands of devastating birth defects in babies.
[Raj] The reason - Thalidomide of a specific chirality was tested, but when the drug was produced
it was produced without regard to chirality. The mixed chiral drug that was sold had a different,
devastating effect.

Sherri Finkbine (American Actress; 1932 - ) was one woman whose pregnancy was horribly
impacted by Thalidomide. Her choice regarding her pregnancy played an important role in the
early political debate about abortion in the United States. Her story was told in a made for TV
movie A Private Matter starring Sissy Spacek (American Actress; 1949 - ).

Remarkably, more than 50 of the “world’s top one hundred drugs are chiral, including such
well-known medicines as Lipitor, Paxil, Zoloft, and Nexium.” [Pick, p. 52] Thankfully, we have
learned from this terrible example of Thalidomide and are aware of differing effects of topologically
different molecules.

You’re going to make something pleasant from your enantiomorphic Möbius bands, a creation
of Theoni Pappas (American Mathematics Educator; circa 1940 - ) [Pap, 2004].

Take your left- and right-handed Möbius bands and join them together at right angles, as
shown in Fig. 16. Be sure to tape them together firmly on ”both” sides.

48. How many sides does this new object have? Explain.

49. How many edges does this new object have? Explain.

50. Cut each of the Möbius bands making up this object longitudinally down their centers,
cutting right through their common intersection. You should get two ”lovely” linked objects.
Describe them.

Figure 3.15: Enantiomorphic Möbius bands.
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Figure 3.16: Joined enantiomorphic Möbius bands.

3.10 Möbius Band Icons

Awareness ribbons, like the AIDS and breast cancer awareness ribbon in Figure 3.17, are common-
place and are used to symbolize many different causes. What are the mathematical properties of
such a ribbon?

To find out you simply have to make an awareness ribbon using one of your strips of paper. In
constructing your ribbon, be careful to construct it so that:

• Its twist is the same as in Figure 3.17 below - the same face of the ribbon should be showing
on both of the flat components.

• You trim the ends of the ribbon in the appropriate directions to make the points.

51. Release the ribbon and try to form it into a cylinder by joining parts of the edge together
without overlapping. Can you? Explain.

52. Can you form the ribbon into a Mbius band by joining parts of the edge together without
overlapping? If so, specify the number of twists that the ribbon must have.

An even more prominent contemporary icon is the recycling symbol. Shown in Figure 3.18,
this symbol was created by a 23 year-old college student named Gary Anderson (American
Graphic Designer and Architect; 1947 - ) to help commemorate our nation’s first Earth Day
celebration on 22 April, 1970. One of the most universally recognized symbols of modern times,
the symbol’s history has only become more widely known recently. (Jones 1999 and Peterson 2003)

This prominent symbol is also a Möbius band! Try it. Make a Möbius band and, as illustrated
in Figure 3.19 flatten it to make the recycling symbol.

53. What are some reasons the Möbius band might be an appropriate symbol for recycling?

54. What is it about the Möbius mascot pictured in Figure 3.13 that makes the name Möbius
appropriate for this character?
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Figure 3.17: AIDS and breast cancer awareness ribbons.

55. Make several Möbius bands with different numbers of twists. Which can be flattened into a
triangular shape resembling Figure 3.18? State what you observe as a conjecture, specifying
clearly what evidence you have for your conjecture.

With no licensing restrictions, there is not a single, universal recycling symbol. All sorts of
artists have adapted the symbol. Pictured in Figure 3.20 below are three alternative recycling
symbols.

56. Explain why the recycling symbols in Figure 3.20 are, topologically, fundamentally different
than the “official” recycling symbol in Figure 3.18.

57. Using Investigation 56, determine what type of Möbius band one needs to form the “official”
recycling symbol?

58. Using Investigation 56, determine what type of Möbius band one needs to form the ”alter-
native” recycling symbols in Figure 3.20?

59. The “alternative” recycling symbols with the topological properties of Figure 3.20 are more
commonplace than the original. Why do you think this might be so?

The final symbol we will consider was briefly described in the introductory section ”Möbius
Sightings.” As noted, when the first author first saw this symbol, he immediately thought that the
paper clip star in Figure 3.14 was constructed using Möbius bands. This symbol was created for
the movie poster of the Holocaust documentary Paper Clips. This documentary [Paperclips, 2004]
is an award-winning 2004 documentary about Whitwell (TN) Middle School’s Holocaust study.
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Figure 3.18: The recycling symbol.

Figure 3.19: Möbius band and flattened Möbius band.

To try to understand the numerical magnitude of the Holocaust genocide, middle school students
in this small town attempted to collect 6 million paper clips. They chose paper clips because they
were used by Norwegians as symbols of silent protest against the Holocaust. It is a profoundly
moving documentary with deep lessons about teaching and learning.

Of course, the symbol on the movie poster represents the Star of David - the universal
symbol of Judaism. Constructed from two superimposed equilateral triangles, this symbol has
many other symbolic interpretations: the Seal of Solomon, a hexagram, a snowflake, and the Star
of Bethlehem.

So what exactly does the paper clip star have to do with Möbius bands? Shown on the left
in Figure 3.21 is a Möbius strip with three thin rectangles removed from its interior. This strip
represents three paperclips chained together and then twisted into a Möbius band. Flattened into
a recycling-type symbol, as in the center of Figure 3.21, one sees an exact analogue of the triangles,
like those pictured in Figure 3.22, used to make up the paper clip star. This figure is also strikingly
similar to the wonderful “Möbius Strip I” woodcarving of M.C. Escher, pictured on the right in
Figure 3.21.
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Figure 3.20: Alternative recycling symbols.

Figure 3.21: Genus 3 and flattened genus 3 Möbius bands; M.C. Escher’s “Möbius Strip I”.

3.11 The Paper Clip Möbius Microworld

Required Supplies: You will need the following physical materials for the
investigations

• 2” uncoated paperclips

• Thin wire (e.g. crafting wire or unbraided picture hanging wire)

• Needle-nose pliers

So how can we make such a paperclip star?

Get some paperclips and chain them together three at a time. Have them face the same
direction, for obvious aesthetic reasons, then chain them front to back to form paper clip Möbius
bands in the shapes of triangles, as shown in Figures 3.22. Can you do it? We could, and did.
However, it didn’t help us build pleasing paper clip stars. These triangles are structurally unstable
and there is nothing to hold the two triangles together without leaving an ugly, unstable mess.
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What would a mathematician do? Well, when faced with a puzzle, they play. Eventually,
somehow we made a single paper clip Möbius band that was stable: you could move it, but you
could also set it down in a way that it formed a strong, structurally solid base. Now we were onto
something. Alas, we couldn’t seem to make another one! It was time to really analyze things once
and for all: right or left chirality; one, or three, or five,... twists. What kind of paper clip Möbius
band is best?

In Knot theory, the important branch of topology which makes up Discovering the Art of Knot
Theory, crossings play a critical role. This is a natural way to analyze the paper clip Möbius
bands, hereafter called pc Möbi. Three particular pc Möbi are shown in Figure 3.22.

Figure 3.22: The pc Mobi U-O-O, left, and two others.

Consider the pc Möbi in Figure 3.22. You should see that they are different. How might we
name them? For consistency, we need some conventions. We will always position the pc Möbius so
a paperclip runs horizontally along the bottom of the figure. Notice that where each pair of paper
clips comes together there are two crossings. As illustrated in Figure 3.23, let’s concentrate on the
crossings the interior, travel in a clockwise direction, and let’s always begin labeling our crossings
at the top vertex. The interior length of the paper clip headed NE goes under the interior length
of the paper clip headed SE. We’ll call this an under crossing and have labeled it with a “U”.
Continuing around clockwise we see that at the next crossing the interior length of the SE paper
clip goes over the interior length of the W paper clip, forming what we will call an over crossing .
We label it with a “O”. The third vertex has the W paper clip crossing over the NE paper clip;
an over crossing which we label with a “O”. So, we name this pc Möbius U - O - O.

Notice that we will not allow paperclips to be ”folded over” one another. The pc Möbius in
Figure 3.24 has an illegal configuration at the bottom left vertex - there are four crossings instead
of two. The horizontal paperclip must be reflected, as shown in the figure.

60. Label each of the crossings of the pc Möbi shown in the center of Figure 3.22 and then
determine the appropriate name for this pc Möbi.

61. Repeat Investigation 60 to label and name the pc Möbi on the right of Figure 3.22.

62. Show that each of the pc Möbi in Figure 3.22 can be transformed into any of the other pc
Möbi in this figure via an appropriate rotation.
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Figure 3.23: The crossings on a PC Möbi labelled; this is the U-O-O PC Möbi.

63. If we begin with a pc Möbi from Figure 3.22 and rotate it so the resulting pc Möbi has a
paperclip running horizontally along the bottom of the figure, can the result be a pc Möbi
any different than one of those in this same figure? Explain.

The properties you have described in Investigations 62 and 63 show that the three pc Möbi in
Figure 3.22 form an equivalence class under rotations by 0, 120, and 240 degrees.

64. Using the naming scheme above, name all of the possible pc Möbi that can be made from
three paperclips.

65. Divide all of the different pc Möbi into equivalence classes under rotation. How many different
equivalence classes are needed account for all of the pc Möbi described in Investigation 64?
Explain.

Of course, the symmetries of an equilateral triangle include reflections too, as shown in Figure
3.25.

Take 3 paperclips and make a pc Möbi. Don’t worry too much about which one you made, just
quickly make one. Odds are that it is an o-o-u, a u-u-o, or a rotated version of one of these as the
other pc Möbi are harder to make.

66. By drawing and labeling appropriate diagrams, show what happens to the crossings of your
pc Möbius as you reflect it via Rvertical.

67. Repeat 62) for the reflection Rright.

68. Repeat 62) for the reflection Rleft.

69. Does your pc Möbius remain unchanged under all of these reflections?

70. Does your pc Möbius stay in the same equivalence class under these reflections?
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Figure 3.24: An illegal pc Möbi; the horizontal clip can be flipped down.

Figure 3.25: Reflections of an Equilateral Triangle; Rvertical, Rright, and Rleft respectively.

Later, after you have learned how to make representatives from each of the equivalence classes,
you will see that your answer to Investigation 70 holds for all pc Möbi.

As you hold your pc Möbius you should notice that you can often reflect a single paperclip
about its long axis, as shown in Figure 3.26.

71. Reflect each of the paperclips in your pc Möbi which have opposite labels at the opposite
ends. Describe what happens.

72. If there are any paperclips in your pc Möbi that have the same labels on opposite ends, show
that reflecting this paperclip forms an illegal configuration.

The investigations above illustrate the utility of equivalence classes. They have partitioned
the pc Möbi into disjoint sets that are invariant under rotations, reflection, and “legal paperclip
reflections”. In more concrete terms, what this shows is that once you have made a pc Möbius you
cannot fundamentally change it without unclipping it.

There is also a very nice connection with Möbius bands here. One can check by experimenting
that the only Möbius bands that can be flattened into triangles as in Figure 3.19 are those with
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Figure 3.26: Reflecting a single clip in a pc Möbius.

1 or 3 twists. And we have the enantiomorphic pairs of left and right versions of each of these.
I.e. our equivalence classes of pc Möbi correspond exactly to the equivalence classes of Möbius
recycling symbols that can be made - those that you considered in Investigations 64 - 70.

3.12 Building PC Möbi

Using the results of our analysis in the previous section, we can no build all of the topologically
distinct pc Möbi that you classified above. This is, in fact, the key to building the paperclip stars.

With a bit of practice, the steps below should allow you to make any pc Möbi that you want
in under a minute.

1. Decide exactly which pc Möbi you want to create.

2. Chain three paper clips together end to end in the same direction.

3. Form the chained paperclips into the shape of a triangle with the unlinked vertex
at the lower right.

4. Adjust the lower left vertex so it has the appropriate crossing you desire. If the
crossing is not correct, simply reflect the horizontal paperclip along its long axis
and this will change the crossing from over to under or under to over.

5. Adjust the top vertex so it has the appropriate crossing you desire. As in Step
4, if the crossing is not correct, just reflect the paperclip running southeast over
its long axis and this will change the crossing from over to under or under to
over.

6. Chain on at the lower right with the desired crossing. This can be accomplished
as illustrated in Figure 3.27 which illustrates all possible situations and desired
outcomes.
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Slide open arm up through bot-
tom for Inner open arm →
over crossing.

Slide open arm down through
top for Inner open arm → un-
der crossing.

Slide open arm down through
top for Outer open arm →
over crossing.

Slide entire clip up through bot-
tom then link open arm for
Outer open arm → under
crossing.

Figure 3.27: Creating desired final crossings in a PC Mobi.

Building Task 1 - Make an O-O-U pc Möbi, an U-U-O pc Möbi, an O-O-O pc Möbi, and
an U-U-U pc Möbi.

3.13 Paper Clip Stars

Now you’re almost ready to make your star. If you manipulate the O-O-O or U-U-U pc Möbi you
will see that they have a structural stability that all of the others lack. Indeed, this is why it was
harder to make the former than the latter.

Here’s what you do to make a paper clip star: Make two pc Möbi, both O-O-O, both U-U-U,
or one of each. Notice that each is stable in both concave up or concave down orientations. Orient
both with the same concavity. Then weave one pc Möbi through the center openings of the paper
clips that make up the other. The latter will momentarily loose its concavity. When you are done,
a little pressure on the latter returns its concavity and provides the needed structural stability!
To make this stability permanent simply use 3 small pieces of wire to connect the two pc Möbi.

Building Task 2 - Build a paper clip star.

You now have your own piece of mathematical art, a paper clip star made from Möbius bands
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that resembles those in Figure 3.28.

Figure 3.28: Paper clip stars from Möbi.

You get to decide what your star symbolizes. With the use of different color paperclips, which
are a little harder to work with because of their added thickness, we can come full circle back
to the documentary “Paper Clips” by creating paperclip models of the inmate markings worn by
prisoners in the Concentration Camps during the Holocaust. Several are shown in Figure 3.29.

Figure 3.29: Paper clip stars from pc Möbi which model those worn in the Concentration Camps
by homosexual male Jews, all Jews, and Jewish political enemies respectively.
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[Mat] Charles J. Matthews, ”Some novel Möbius strips,” Mathematics Teacher, vol. 65, no. 2,
1972, pp. 123-6.
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[Ric] Lloyd Richardson, jr., ”The Möbius strip: An elementary exercise providing hypotheses
formation and perceptual proof,” Arithmetic Teacher 23: 2 (1976): 127-9.

The author would like to thank Kris Hedblom for many wonderful discussions about Möbius
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Fleron jr. for thoughtful suggestions and the students in his Studies in the Literature of Mathe-
matics course who provided invaluable editorial feedback to their teacher.

82



DRAFT c© 2017 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

3.15 Connections

3.15.1 Geography

The map in Figure 3.30 is called a Mercator projection map of the world.

73. Why is the Mercator projection so widely used? I.e. what properties does it have that makes
it a particularly important map?

74. Provide a rough, qualitative description of how the Mercator projection is created.

75. Despite its importance, there are major distortions when one uses such a map to represent
the surface of the earth. What are some of these distortions.

76. Find a different kind of map projection. For this projection:

• Show how this projection represents the world in a map.

• Describe how this projection is created.

• Describe the important physical characteristics that this projection correctly represents.

• Describe important physical characteristics that this projection distorts.

77. Figure 3.31 shows an “upside” down map of the United States. Does this alternative map
bother you? Why?

78. Find another alternative map that represents the area in which it maps in a way that chal-
lenges your perceptions that the typical map of this area has engrained in you.

79. Repeat Investigation 78 for a different kind of alternative map.

The maps in Figure 3.32 - Figure 3.35 are cartograms where the area of each country is
distorted to illustrate a certain property of that country. For example, a population cartogram
is a map such that each country’s area is proportional to its population. Countries like Japan with
enormous populations are shown to be large in the map despite their small geographical size.

80. Find five different cartograms that you think are valuable in illustrating certain data. For
each, identify the type of data used to construct the cartogram and then, in several sentences,
describe why you think this is a useful cartogram. Be sure to choose diverse cartograms,
representing different social, economic, physical, political, judicial, religous, etc., data.

81. The cartograms below are based on HIV/AIDS rates, greenhouse gas emissions, child mor-
tality rate and gross domestic product. For each, identify which data you believe generates
which cartogram. Give precise reasons for your answers.
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Figure 3.30: Mercator projection of the world.

3.15.2 Physiology

Figure 3.36 below is a representation of a human body that has been topologically deformed to
illustrate a certain physiological mechanism. In other words, it is a analogue of the cartogram but
its subject is human function.

82. What physiological mechanism do you think is represented by this model? Explain in detail.

83. For the mechanism that you have chosen, describe important differences that would appear
in a female model.

84. Choose another physiological mechanism and describe the analogous model that it would
generate.

Portraits of the Earth: A Mathematician Looks at Maps, Timothy G. Feeman, American Math-
ematical Society, 2002. ]
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Figure 3.31: Mercator projection of part of North America.

Figure 3.32: World cartogram of ...
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Figure 3.33: World cartogram of ...

Figure 3.34: World cartogram of ...
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Figure 3.35: World cartogram of ...

Figure 3.36: A ... (Hint: 10 letters, starts with h.)
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Chapter 4

Flexagons, Magic, Genius, and the
Nobel Prize

I don’t know anything, but I do know that everything is interesting if you go into it deeply
enough.

Richard Feynman (American Phsyicist; - )

I learned from her [my mother] that the highest forms of understanding we can achieve are
laughter and human compassion.

Richard Feynman (; - )

4.1 Richard Feynman

In questions of science the authority of a thousand is not worth the humble reasoning
of a single individual.

Galilei Galileo (Italian Physicist, Astronomer, Mathematician, and Philsopher;
1564 - 1642)

Richard Feynman was an American Physicist born on 11 May, 1918 in Far Rockaway, Queens,
New York. As a child he did not speak until he reached the age of three. His parents were
particularly nurturing, his mother Lucille’s support taking more social and human forms while
his father Melville’s support was more intellectual and scientific. Always encouraging his son to
question authority, Feynman did fulfill his father’s dream of having his son become a scientist.
Indeed, he was one of the preeminent twentieth century physicists.

He was also a wonderful character who loved exploring all facets of the world - natural, scientific,
cultural, artistic, and historic. Later in life he wrote two widely read popular books Surely You’re
Joking Mr. Feynman and What Do You Care What Other People Think?. As you might tell from
the titles, they are spirited reads which recount adventures of all sorts. The celebrated Freeman
Dyson (; - ) has called the former book “the best antitode against academic snobbery.”1 They
are highly recommended.

1From From Eros to Gaia, Pantheon Books, 1992, p. 311.
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In addition to his role as an important physicist and teacher of physics, Feynman was fairly
well-known for his role in the inquiry into the space shuttle Challenger disaster. The space shuttle
Challenger departed on its ninth mission at 11:38 a.m. E.S.T on 28 January, 1986. It had a crew
of seven, including Sharon Christa Corrigan McAuliffe (American Teacher and Astronaut;
1948 - 1986) who was to become the first teacher in space as part of the Teacher in Space Program.
Because of her role, children all over the country watched the liftoff live in schools. 73 seconds after
liftoff Challenger broke apart in a ball of smoke. All seven astonauts were killed. Shortly after
this disaster a Presidential Commission on the Space Shuttle Challenger Accident, also known as
the Rogers Commission, was formed. Feynman was one of twelve members of this commission.

Described in detail by Feynman in the second part of What Do You Care What Other People
Think? the commission found itself nearly overwhelmed by political posturing, people more con-
cerned with public relations than truth, lawyers protecting many of the contractors, and NASA
officials worrying more about losing funding than determining the cause of the disaster. As a scien-
tist, Feynman made great headway serving as “gumshoe” who was perfectly at home investigating
in the labs, in the factories, and with the engineers and technicians that were actually involved in
the day to day shuttle development, design, and operation. Feynman, with the help of others like
Roger M. Boisjoly (American Engineer; 1938 - ) who had warned not to launch Challenger and
was later awarded the Prize for Scientific Freedom and Responsibility by the American Association
for the Advancement of Science for his efforts, focussed on rubber O-rings that helped seal joints
in the fuel tanks under the great stress of liftoff. It was 36 degrees Fahrenheit when the launch
took place, 15 degrees lower than any previous launch.

In a televised moment that eloquently illustrated the great power of the scientific reasoning
of a single individual, Feynman interrupted the Senate hearings on the disaster to dip one of the
O-rings in a glass of icewater. The O-ring had been clamped with a C-clamp that he bought at a
hardware store on his way to the hearings. He then announced the following to the distinguished
audience:

I took this stuff that I got out of your seal and I put it in ice water, and I discovered
that when you put some pressure on it for a while and then undo it it doesn’t stretch
back. It stays the same dimension. In other words, for a few seconds at least and
more seconds than that, there is no resilience in this particular material when it is at
a temperature of 32 degrees. I believe that has some significance to our problem.

(; -

)

The generally outspoken Feynman underspoke on this day. The O-ring and the temperature at
launch were precidely the problems that doomed the Challenger. Short videos of this event can
be found online.

Freeman Dyson recalls this event as follows:

His finest hour as a communicator came when, already mortally ill, he performed an
expiement at a televisted sessions of the shuttle inquiry... The public saw with their
own eyes how science is done, how a great scientist thinks with his hands, how nature
gives a clear answer when a scientists asks her a clear question.2

2From From Eros to Gaia, Pantheon Books, 1992, p. 312.
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Figure 4.1: Richard Feynman and the cold O-rings in the Senate hearings.

(; -

)

4.2 Learning as Play

I don’t know what’s the matter with people: they don’t learn by understanding, they learn
by some other way - by rote or something. Their knowledge is so fragile!

Richard Feynman (; - )

Certainly Feynman’s expertise as a scientist was important in his role on the Rogers Commis-
sion. However, if you look at final result - an O-ring clamped with a $2.00 C-clamp and a glass
of ice-water - it becomes clear that it was a more practical form of knowledge that prompted the
penultimate conclusion. In Surely You’re Joking Mr. Feynman Feynman describes in elloquent
detail the way in which he learned by playing, exploring, discovering, inventing, and understand-
ing - always with his father nearby nurturing but not telling. It is hands-on type of learning, of
understanding the world around you, that lead to the o-rings.

This type of learning is compatible with the discussion of what’s worth knowing in the opening
chapter of Discovering the Art of Mathematics: A Student Tool. It is unclear what lessons at the
hand of the world with his father at his side may have lead to the understanding he needed to
focus on the o-ring. Yet it is the same sort of serendipity as Barbara Shipman’s discovery of the
relationship between the waggle dance and 6-dimensional flag manifolds that are described in the
Student Toolbox. And, it is certainly exactly the type of discovery that Feynman’s father would
be so very proud of.

Many view science and mathematics as rote tasks - but to the scientist and the mathematician
their understanding of their subject is more akin to a puzzle or a game. It is a mystery to be solved.
Scientists and mathematicians are quite fond of puzzles and games, and it would not surprise them
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to see a whole volume. Discovering the Art of Mathematical Puzzles and Games in a series such
as this. Rubik’s Cube, Sudoku, the Fifteen Puzzle, and Peg Solitaire are mathematical - they are
miniature “microworlds” for mathematical exploration.

As children many of you probably made ”Cootie-Catchers”, an origami-like object that is
manipulated with your fingers to tell fortunes:

Figure 4.2: Cootie Catcher

Cootie Catchers have been around almost as long as paper has been widely available and are
common throughout most North American, European, and Far Eastern countries.

In this chapter we will investigate a very similar object, the Flexagon one with deep mathe-
matical properties that was developed through a similar spirit of play that probably lead to the
development of the Cootie Catcher.

4.3 Flexagons

In 1939, Arthur H. Stone (English Mathematician; 1916 - ) was a graduate student in Mathe-
matics at Princeton University, have arrived from England not long before. The American paper
he got for his English three-ring binder was about an inch too wide. He was in the habit of
tearing off this extra paper and folding it. One of the objects he built became known as the hex-
aflexagon, which you will build and analyze below. He was so fascinated with this object he set to
work showing his peers. They became quite a hit in the Department of Mathematics - Princeton
University’s own version of a Cootie Catcher rage! Soon a “Flexagon Committee” was formed,
including Stone, John W. Tukey (American Mathematician; 1915 - 2000) - then a lecturer in
mathematics, Bryant Tuckerman (American Mathematician; 1915 - 2002) - then a graduate
student in mathematics, and Feynman - then a graduate student in physics. The Committee in-
vented all sorts of flexagons and worked out all of their mathematical properties before the Second
World War broke up the group.

In the 1950’s Tuckerman demonstrated flexagons for winners of a science talent contest each year
and they were subsequently resurrected by the popular mathematical author Martin Gardner
(; - ). They have been in wide circulation since then and there have been several books written
about them, including: Flexagons Inside Out by Les Pook.
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4.4 Investigations

1. Find out a few interesting things about each of the members of the flexagon committee. In
particular, determine whether each of these people lead productive, successful lives.

4.5 Making and Flexing a Flexagon

We will begin by making a Hexahexaflexagon . You will need a perfectly rectangular strip of
paper that is about 12 times as long as it is tall. Adding machine tape of width between 2 and 3
inches works perfectly. Alternatively, you can carefully cut a strip of paper that is 13

8 inches wide
and 17 inches long from a sheet of 11 inch by 17 inch paper.

You must fold your strip into a series of 19 congruent equilateral triangles that are exactly
adjacent to one another, as shown in the top image in Figure 4.3. To make these folds perfectly,
each fold will need to be exactly 60 degrees. The Folding tool for Flexagons in Figure 4.8
should be quite helpful.

2. Describe what geometric principles you used to help insure that the folds in your strip were
correct.

Figure 4.3: Pattern for making a Hexahexaflexagon

Once you have your 19 triangle folds, clip off the extra ends and fold each of the folds in the
opposite direction so the folds can operate in either direction. Orient your strip exactly as in the
upper image in Figure 4.3. In pencil, copy the labels onto your strips as indicated. Then flip your
strip over toward you, so it is oriented exactly as in the lower image in Figure 4.3, and copy the
appropriate labels onto the other side.

You are now ready to make your Hexahexaflexagon. Fold your strip once so that the two
faces labelled “1” are touching. Then fold your strip once so that the two faces labelled “2” are
touching. Continue folding in this way until all of the faces labelled “1” - “11” have been folded
onto each other. At this point the only labelled faces you should see are those labelled “A”, “B”,
“1”, and the two droplet symbols for glue. Your strip should be folded into a shape that is almost
hexagonal. Arrange the shape so the two faces labelled “12” are touching and the two remaining
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faces with the droplet symbols can be folded on to each other. Spread a small amount of glue onto
the faces with the droplet symbol and glue these faces together. Your Hexahexaflexagon should
be in the shape of a hexagon with all faces on one side of the Hexahexaflexagon labelled “A”, the
opposite side labelled “B”.

Now you have to learn how to flex your flexagon. Once you see it and try it a few times, it’s
easy. If you don’t have somebody to show you, there are numerous videos available on YouTube.
In words it is a bit more cumbersome, but not too bad:

Flexing a Flexagon

• Hold your Hexahexaflexagon flat.

• Fold one creased edge up, into a mountain fold .

• Fold the adjacent creased edge down, into a valley fold .

• Repeat the two previous steps each twice more so you have mountain and
valley folds alternating around the six creased edges.

• If you push the valley folds together, your flexigon will have folded up
into a 3-pointed star; a shape that looks almost like a Y from above.

• With your thumbs grab the point closest to you where the three valleys
have come together. You should see that if you pull this point away from
the center that the edges fold back down into a flattened hexagon.

This move is called a flex of the Hexahexaflexagon.

4.6 Flexagon Faces

3. As you flex your hexa-hexaflexagon (henceforward simply referred to as a flexagon), what
happens to some of the faces?

4. What is happening to the flexagon that allows the faces to disappear and reappear like this?

5. How many different faces do you seem to find as you first start flexing your flexagon?

6. Do you think that there might be more faces that can be found simply by flexing? Try to
find some and then list those that you have found by listing the markings on the faces.

7. You should see several patterns in the markings on the faces that you have found. Describe
these patterns.

8. Look back at the original strip that you used to make your flexagon. Based on the markings
on this original strip, can you guess what other faces should be possible to make by flexing
your flexagon?

9. Return again to the original strip you used to create your flexagon. Count how many faces
make up this strip. Compare this number with the number of triangular faces that appears
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on each face of the flexagon. These quantities should suggest how many different faces can
appear on your flexagon. Explain.

10. Compare your answers to Investigations 8 and 9.

11. Can you explain why the proper name for this flexagon is a hexa-hexaflexagon based on your
investigations so far? Explain.

There are two kinds of geniuses, the ”ordinary” and the ”magicians.” An ordinary
genius is a fellw that you and I would be just as good as, if we were only many times
better. There is no mystery as to how his [her] mind works. Once we understand what
they have done, we feel certain that we, too, could have done it. It is different with the
magicians Even after we understand what they have done, the process by which they
have done it is completely dark Richard Feynman is a magician of the highest order.3

Mark Kac (Polish Mathematician; 1914 - 1984)

Continue to experiment for a while with your flexagon. See what patterns you can find,
what you can discover that might help you figure out the secret of the symmetries of the hexa-
hexaflexagon. Along the way you should be able to answer some of the following questions:

12. In a given state, how many different ways are there that you can flex your flexagon?

13. In a given state, how many layers thick, including the top layer, are the sections under each
triangular face in your flexagon? (Count the two glued layers as a single layer.)

14. How is the answer to Investigation 13 number related to the proper name your flexagon?

15. How are Investigations 12 and 13 related? Explain.

16. If you end up with a given collection of symbols showing on the face of your flexagon (e.g.
six As), will the state of your flexagon be the same, with the symbols on the face appearing
in exactly the same way, each time these symbols form a face on your flexagon? Explain.

When you want some help, the next section has a few moves that might help you find out more
about the patterns.

Warning: You should only flex your flexagon in the standard way described
above. You cannot ”pull” or ”weave” sections through each other to form
different face combinations. It may be an interesting mathematical problem
to analyze this new situation, but it is beyond our reach and will make the
subsequent guided discovery mute. So we will not allow this right now. You
are invited to try it on your own if you want - just be ready to end up with a
mangled flexagon that you can no longer amaze your friends with.

3Quoted in Genius by James Gleick.
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4.7 3-Cycles

Hold your flexagon at a specific vertex and flex it. Keeping track of the vertex you flexed at, hold
your flexagon on an adjacent vertex and flex it at this next vertex in the same way. Continue to
do this, always moving to an adjacent vertex (in the same order, either always clockwise or always
counter-clockwise) and flexing.

17. Write down the sequence of faces that you see when you flex your vertex in this way.

18. After a few steps, something surprising happens. What is this? Does it continue to happen
indefinitely?

19. How might you draw a diagram that represents the flexagon states that you have just de-
scribed in the pattern in Investigation 17?

4.8 Getting Stuck

Having flexed the flexagon while moving to adjacent vertices at each stage, you might wonder what
happens when you flex your flexagon while staying at the same vertex. Do this.

20. Write down the sequence of faces that you see when you flex the vertex in this way, staying
at the same vertex.

21. After several steps something surprising happens. What is this?

22. Since you can’t flex, what might you do next?

23. Start flexing again. What do you notice?

24. You should now be able to find all of the faces of the flexagon. Explain how you do this.

4.9 The Hidden Patterns of the Hexa-hexaflexagon

We would like to determine how we can move from face to face to find any face that we want in a
predictable way. It is a bit harder to find patterns when the faces have such convoluted markings
on them. So let’s color them. Pick several different colors (you should know how many you might
need from above) and color each face of your flexagon with a different color as they appear in your
flexing.

If we could find a map that tells us how to travel around all of the possible faces by flexing
then we will have unlocked the secret.
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Project: Use the investigations you have completed so far to help you try to
unlock the secret of the hexa-hexaflexagon by collecting data. You should do
this by trying to look for patterns, sequences of faces, and/or strategies while
you flip the flexagon. You may want to keep track of your data using trees,
lists, networks, spreadsheets, or other means. You may want to keep track of
top and bottom colors, the number of layers, symbol orientations, or whether
a given state forces a specific move or whether you have choices. This should
take quite some time to do - an hour or more. This is a critical part of the
process. If you just jump ahead you will be cheated from the real magic of
discovery.

In deductivist style, all propositions are true and all inferences valid. Mathematics
is presented as an ever-increasing set of eternal, immutable truths. Counterexamples,
refutations, criticism cannot possibly enter. An authoritarian air is secured for the
subject Deductivist style hides the struggle, hides the adventure. The whole story
vanishes, the successive tentative formulations of the theorem are doomed to oblivion
while the end result is exalted into sacred infallibility.4

Imre Lakatos (Polish Mathematician and Philosopher; 1922 - 1974)

4.10 Other Flexagons

There are many other flexagons. There is the tri-hexaflexagon, the tetraflexagon, dodeca-hexaflexagon,
and a whole zoo of others. My favorite is the Pirate Tri-hexaflexagon invented by Peter Hilton,
Jean Pedersen, and Hans Walser. This flexagon is created by folding the following strip:

Figure 4.4: Pirate Trihexaflexagon template.

4From Proofs and Refutations
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Not only is the Pirate Tri-hexaflexagon quite cute, it is a simpler version of the hexa-hexaflexagon.
As the famous mathematician George Polya, who wrote so eloquently about problem solving, re-
minded us:

If you cannot solve the proposed problem try to solve first some related problem. Could
you imagine a more accessible related problems? A more general problem? A more
special problem? An analogous problem? Could you solve a part of the problem?5

(; -

)

So maybe by analyzing this simpler example we can help nurture our investigation of the hexa-
hexaflexagon.

Create the Pirate Tri-hexaflexagon.

25. Flex the Pirate tri-hexaflexagon repeatedly. How many different faces do you see?

26. What do you notice about the order in which the faces occur?

27. Now turn the flexagon over and begin flexing it. What do you see now?

28. What pattern do you see?

Notice that there are happy Pirates, with a patch over the left eye at times, and sad Pirates,
with a patch over the right eye at times. These are different orientations of the tri-hexaflexagon.
This is important to remember when returning to the hexa-hexaflexagon:

Warning: The flexagon, like many other mathematical objects, has an ori-
entation. When you begin writing down patterns, sequences of flexes, and
diagrams which represent the relationship between flexagon states all of these
things will be specific to the orientation of your flexagon. The orientation is
reversed simply by flipping the flexagon over!! If something that you previ-
ously understood seems not to be working it could be that you inadvertently
flipped your flexagon over. Unfortunately, there is no easy visual way to tell
which orientation you are in at a given time without devising an analogue of
the happy/sad Pirate for our hexa-hexaflexagon. So be careful.

29. How many layers are there on adjacent triangular faces on the tri-hexaflexagon?

Suppose that you wanted to build a dodeca-hexaflexagon. Use what you have observed about
the tri-hexaflexagon and hexa-hexaflexagon to answer the following questions:

30. How many different triangular faces would there be on each side of the strip that is used in
constructing the dodeca-hexaflexagon?

31. How many layers would there be on adjacent triangular faces on the dodeca-hexaflexagon?

5From How to Solve It.
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4.11 Flexagons’ Hidden Structure - Möbius Bands

The physical structure of flexagons that enable them to have their magical properties lie with
another amazing mathematical object, the Möbius band. We briefly not this connection here.

If you have already completed the chapter on Möbius bands skip to Investigation 35.

You will need a few sheets of standard copy paper, scissors, and tape. Cut a strip of paper
about 3

4 inch wide and 11 inches long. Draw a single line down the center of this strip. Bring the
two ends of this strip together to form a loop, matching up the two ends of your line and insuring
that there are no twists in your strip. Now place three half-twists in your loop by turning one
end of the strip over three times in succession in the same direction. Then firmly tape the ends
together. The resulting object should look like figure 1a) below:

Fig. 1 - Three-twist Möbius bands

By carefully positioning each of the three half-twists equally around this three-twist Möbius
band you can flatten your band down into a figure that is identical to figure 1b) or figure 1c). The
only difference between these objects is their orientations - Möbius bands are chiral, any Möbius
band and together with its mirror image make up enantiomorphs, a pair of distinct objects. Many
pharmacological molecules are chiral, an issue of profound importance in medicine.

Möbius bands have many remarkable properties that are investigated in Discovering the Art
of Patterns in this series. But just to give a bit of context we note that the recycling symbol is
based on the Möbius band:

Fig. 5 - Recycling Symbol

32. Structurally the two recycling symbols in Fig. 5 are different. Explain how they are different.

33. Which of the symbols above has the same structure, up to enantiomorphy, as the flattened
Möbius band that you made? Explain.

34. As a graphic designer, which recycling symbol would be easier to create? Explain.

Actually, it was the harder of the two symbols in Fig. 5 that is the ”real” recycling symbol
that was created by a 23 year-old college student named Gary Anderson to help commemorate
our nation’s first Earth Day celebration on 22 April, 1970. Many who design their own recycling
symbols miss this distinction and create the simpler one.

35. Make a few more flattened, three-twist Möbius bands. Use paper strips that are 1” wide and
11” long, 1 1/4” wide and 11” long, and 1 1/2” wide and 11” long. How do these objects
compare to the original that you made?

36. Keeping a length of 11”, is there any limit to how wide you can make your strip and still
create a flattened, three-twist Möbius? Explain.

37. Make a flattened, three-twist Möbius out of a strip of paper that is exactly 2” wide and 10
1/2” long. (It is easiest just to overlap ” of the length of an 11” strip.) Describe precisely
how this object is related to your hexaflexagon.
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Figure 4.5: The Tuckerman traverse for the Pirate trihexaflexagon.

4.12 The Tuckerman Traverse

A simple diagram can be used to show the sequence of faces that appear in the Happy Pirate:

38. Make an analogous diagram for the Sad Pirate.

39. Use this approach to make a diagram which illustrates the sequence of faces that appears as
you traverse a specific 3-cycle on your hexahexaflexagon.

40. As you go through the 3-cycle in Investigation 39, determine which states have required
moves and which can bring you to two different states. Label these appropriately on your
diagram.

41. Move to a state on the 3-cycle in Investigation 39 where you have a choice of the next
state. Flex the flexagon so you will move out of the 3-cycle you have been in. Expand
your diagram appropriately to include the subsequent states you find yourself in, continuing
around a different 3-cycle if you can.

42. Repeat Investigation 41 several more times.

43. Eventually your diagram will become complete. Draw your diagram and explain in detail
how you can use it to navigate the entirety of the flexagon.

44. Explain how you know your diagram is complete.

The diagram you have found is called the Tuckerman traverse for the hexa-hexaflexagon.

4.13 Face Colorings and Face Configurations

The Tuckerman traverse completely unlocks the secret of the hexa-hexaflexagon in terms of the way
faces arise as the flexagon is flexed in different ways. Use your diagram to consider the following
questions.

45. Suppose that you wanted to flex your flexagon to show all 6 of the different face colorings.
What is the minimum number of flexes you can accomplish this in?

100



DRAFT c© 2017 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

46. Is there a requirement where you should start to make such a minimal flexagon face coloring
tour? Explain.

47. Suppose you wanted to flex your flexagon to show all 9 of the different face configurations
that are possible in a given orientation. What is the minimum number of flexes you can
accomplish this in?

48. Is there are requirement where you should start to make such a minimal flexagon face con-
figuration tour? Explain.

4.14 Flexagons and the Nobel Prize

[Feynman] could not, or would not, distinguish between the prestigious problems of
elementary particle physics and the apparently humbler everyday questions that seemed
to belong to an earlier age. No other physicist since Einstein so ecumenically accepted
the challenge of all nature’s riddles.6

James Gleick (; - )

The study of flexagons lead to the Tuckerman traverse. This diagram was a forerunner to
the Richard Feynman’s invention many years later of the Feynman diagram. Such diagrams are
schematic diagrams which illustrate the states of particles in subatomic particle physics and quan-
tum field theory. One such diagram is shown in Figure 4.6.

Figure 4.6: A Feynman diagram for beta decay.

In 1965 Richard Feynman won the Nobel Prize in physics for his work on quantum electro-
dynamics. Feynman diagrams played a central role and remain a prominent device in modern
physics.

49. How remarkable is the connection between flexagons and the Feynman’s Nobel Prize?

50. What moral might this historical vignette suggest about the nature of learning, discovery,
and education? Explain.

6Quoted in Genius.
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Figure 4.7: United States postage stamp honoring Feynman.

Reflective Essay: Return to the accomplishments of the people on the
Flexagon committee. How remarkable is it that they all became so accom-
plished? What is it about the flexagon that might have impacted their suc-
cess? Do you think creativity like this can be measured by standarized exams?
What impact does any of this have on your view of “what’s worth knowing”
and “learning as play”?
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Genius: The Life and Science of Richard Feynman by James Gleick, Vintage Books, 1993.
Flexagons Inside Out by Les Pook, Cambridge University Press.
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Figure 4.8: Folding tool for Flexagons
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