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Somewhere something incredible is waiting to be known.   

 

Carl Sagan 

 

 

 

 

 

 

Live as if you were going to die tomorrow.   

Learn as if you were going to live forever. 
 

Mahatma Gandhi 

 

 

 

 

 

 

Imagination is more important than knowledge. 
 

Albert Einstein 

 

 

 

 

 

 

Tell me and I’ll forget. 

Show me and I may not remember. 

Involve me, and I’ll understand. 
 

Native American Saying
1
 

      

 

                                                           
1
 This wisdom has a long tradition and is attributed to many cultures, including ancient Chinese and Innuit. 
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PREFACE 
 

Notes to the Explorer 
 

 Yes, that’s you – you’re the explorer.  “Explorer?”  Yes, explorer.   

 And these notes are for you…  

 I could have addressed you as “reader,” but this is not a traditional book.  Indeed, this 

book cannot be read in the traditional sense.  For this book is really a guide.  It is a map.  It is 

a route of trail markers along a path through the world of mathematics.  This book provides 

you, our explorer, our heroine or hero, with a unique opportunity to explore this path – to take 

a surprising, exciting, and beautiful journey along a meandering path through a mathematical 

continent named number theory. 

 “Surprising?”  Yes, surprising.  You will be surprised to be doing real mathematics.  

You will not be following rules or algorithms, nor will you be parroting what you have been 

dutifully shown in class or by the text.  Unlike almost all mathematics textbooks, this book is 

not a transcribed lecture followed by dozens of exercises that closely mimic illustrative 

examples.  Rather, each topic in this book begins briefly with a survey, narrative, or 

introduction followed by the much longer Investigations section.  The Investigations form the 

heart of this book, this journey.  In the form of a Socratic dialogue, the Investigations ask you 

to explore.  They ask you to discover number theory.  This is not a sightseeing tour, you will 

be the active one here.  You will see mathematics the only way it can be seen, with the eyes of 

the mind – your mind.  You are the mathematician on this voyage. 

 “Exciting?”  Yes, exciting.  Mathematics is captivating, curious, and intellectually 

compelling if you are not forced to approach it in a mindless, stress-invoking, mechanical 

manner.  In this journey you will find the mathematical world to be quite different from the 

static barren landscape most textbooks paint it to be.  Mathematics is in the midst of a golden 

age – more mathematics is discovered each day than in any time in its long history.  For 

example, the two biggest highlights along this path through number theory are mathematical 

discoveries that shook the mathematical world during the 1990’s.  In the time period between 

when these words were written and when you read them it is quite likely that important new 

discoveries adjacent to the path laid out here have been made.   

“Beautiful?”  Yes, beautiful.  Mathematics is beautiful.  It is a shame, but most people 

finish high school after 10 – 12 years of mathematics instruction and have no idea that 

mathematics is beautiful.  How can this happen?  Well, they were busy learning mathematical 

skills, mathematical reasoning, and mathematical applications.  Arithmetical and statistical 

skills are useful skills everybody should possess.  Who could argue with learning to reason?  

And we are all aware, to some degree or another, how mathematics shapes our technological 

society.  But there is something more to mathematics than its usefulness and utility.  There is 

its beauty.  And the beauty of mathematics is one of its driving forces.  As the famous 

mathematician Henri Poincare (1854-1912) said: 
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The mathematician does not study pure mathematics because it is useful; 

[s]he studies it because [s]he delights in it and [s]he delights in it because it is 

beautiful. 

Mathematics plays a dual role as both a liberal art and as a science.  As a powerful 

science, mathematics shapes our technological society and serves an indispensable tool and 

language in many fields.  But it is not our purpose to explore these roles of mathematics here.  

This has been done in many other fine, accessible books.  (E.g. [COM] and [TaAr].)  Instead, 

our purpose here is to journey down a path that values mathematics from its long tradition as a 

cornerstone of the liberal arts. 

  Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.).  

It was a central concern of the great Greek philosophers like Plato (427-347 B.C.).  During 

the Dark Ages, classical knowledge was rescued and preserved by monasteries.  Knowledge 

was categorized into the classical liberal arts and mathematics made up several of the seven 

categories.
2
  During the Renaissance and the Scientific Revolution the importance of 

mathematics as a science increased dramatically.  Nonetheless, it also remained a central 

component of the liberal arts during these periods.  Indeed, mathematics has never lost its 

place within the liberal arts – except in the contemporary classrooms and textbooks where the 

focus of attention has shifted solely to the training of qualified mathematical scientists.  If you 

are a student of the liberal arts or if you simply want to study mathematics for its own sake, 

you should feel more at home on this exploration than in other mathematics classes.    

 “Surprise, excitement, and beauty?  Liberal arts?  In a mathematics textbook?”  Yes.  

And more.  In your exploration here you will see that mathematics is a human endeavor with 

its own rich history of human struggle and accomplishment.  You will see many of the other 

arts in non-trivial roles:  art and music to name two.  There is also a fare share of philosophy 

and history.  Students in the humanities and social sciences, you should feel at home here too. 

Mathematics is broad, dynamic, and connected to every area of study in one way or 

another.  There are places in mathematics for those in all areas of interest. 

The great mathematician and philosopher Betrand Russell (1872-1970) eloquently 

observed: 

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - 

a beauty cold and austere, like that of sculpture, without appeal to any part of 

our weaker nature, without the gorgeous trappings of paintings or music, yet 

sublimely pure and capable of a stern perfection such as only the greatest art 

can show.  

It is my hope that your discoveries and explorations along this path through number theory 

will help you glimpse some of this beauty.  And I hope they will help you appreciate Russell’s 

claim that: 

                                                           
2
 These were divided into two components: the quadrivium (arithmetic, music, geometry, and astronomy) and 

the trivium (grammar, logic, and rhetoric); which were united into all of knowledge by philosophy. 
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…  The true spirit of delight, the exaltation, the sense of being more than 

[hu]man, which is the touchstone of the highest excellence, is to be found in 

mathematics as surely as in poetry.  

Finally, it is my hope that these discoveries and explorations enable you to make mathematics 

a real part of your lifelong educational journey.  For, in Russell's words once again:   

…  What is best in mathematics deserves not merely to be learned as a task 

but to be assimilated as a part of daily thought, and brought again and again 

before the mind with ever-renewed encouragement.      

 

Bon voyage.  May your journey be as fulfilling and enlightening as those that have 

served as beacons to people who have explored the continents of mathematics throughout 

history.  
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Mathematics is something that one does. 
 

E.E. Moise 

 

 

 

 

 

A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more 

permanent than theirs, it is because they are made with ideas. 
 

G.H. Hardy 

 

 

 

 

 

Indeed, only a few are mathematically gifted in the sense that they are endowed with 

the talent to discover new mathematical facts. But by the same token, only a few are 

musically gifted in that they are able to compose music. Nevertheless there are many who can 

understand and perhaps reproduce music, or who at least enjoy it. We believe that the number 

of people who can understand simple mathematical ideas is not relatively smaller than the 

number of those who are commonly called musical, and that their interest will be stimulated if 

only we can eliminate the aversion toward mathematics that so many have acquired from 

childhood experiences. 
       

Hans Rademacher and Otto Toeplitz 

 

 

 

 

 

It is impossible to be a mathematician without being a poet in soul.  
      

Sofia Kovalevskaia 

 

 

 

 

 

The only way to learn mathematics is to do mathematics. 
      

Paul Halmos 
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INTRODUCTION 
 

Number Theory 
 

 Mathematics is the queen of the sciences and number theory the queen of 

mathematics.     

-- Carl Friedrich Gauss  

 
 ...number theory. It is a field of almost pristine irrelevance to everything except 

the wondrous demonstration that pure numbers, no more substantial than Plato's 

shadows, conceal magical laws and orders that the mind can discover after all.   

-- Newsweek, 5 July, 1993.  

 
 Number theory is the name given by mathematicians to the study of whole numbers – 

the patterns, relationships, laws, and properties that govern these numbers.  Our school 

experiences with whole numbers were often characterized by memorizing multiplication 

tables, learning long division algorithms, computing mysterious greatest common divisors, 

and the like, so you might not agree with Carl Freidrich Gauss (1777-1855) that this is a 

very regal area.  And you might be hesitant give it another look.  Might $1 Million change 

your mind? 

 

A Million Dollar Problem 
 

 You will probably remember that a prime number is a positive integer whose only 

divisors are 1 and itself.  So, for example, the numbers 2, 3, 5, 7, and 11 are the first 5 primes.  

(Mathematicians usually exclude the number 1 as a prime.)  In a letter dated 7 June, 1742 

Christian Goldbach (1690-1764), a mathematician of little renown outside of this letter, 

wrote to Leonhard Euler (1707-1783), who we meet often across many areas of 

mathematics, that he had observed the following pattern: 
 

2 = 1 + 1 

4 = 1 + 3 

6 = 3 + 3 

8 = 3 + 5 

10 = 5 + 5 

12 = 5 + 7 

14 = 7 + 7 

16 = 5 + 11 

18 = 5 + 13 

20 = 7 + 13 

22 = 11 + 11 

24 = 11 + 13 

26 = 13 + 13 

   

3 = 1 + 1 + 1 

5 = 1 + 1 + 3 

7 = 1 + 3 + 3 

9 = 3 + 3 + 3 

11 = 3 + 3 + 5 

13 = 3 + 5 + 5 

15 = 5 + 5 + 5 

17 = 5 + 5 + 7 

19 = 5 + 7 + 7 

21 = 7 + 7 + 7 

23 = 5 + 5 + 13 

25 = 3 + 11 + 11 

27 = 5 + 11 + 11 

  
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On the basis of inductive evidence of this sort, Goldbach surmised, or, as mathematicians 

would say, conjectured, that each positive integer could be written as the sum of primes: two 

primes if it is even and three primes if it is odd.
3
  This conjecture, known appropriately as 

Goldbach's conjecture, remains unsolved to this day despite tremendous efforts of 

mathematicians during the ensuing two and one-half centuries.  As if the intellectual interest 

in solving a problem this long outstanding is not enough motivation, the Clay Mathematics 

Institute [CMI] has offered $1 Million dollars to anybody who can definitively resolve this 

conjecture!
4
  In other words, find an example where Goldbach's conjecture does not apply or 

prove that it will always work and $1 Million is yours. 

 

High Drama 
 

 Intrigued?  Many are.  In fact, number theory has recently served as the vehicle for 

several major theatrical productions.  The Tony Award and Pulitzer Prize winning Broadway 

play Proof, by David Auburn [Aub], revolves around the obsessions of an aging 

mathematician and his daughter, a mathematical prodigy who cares for her psychologically 

unstable father, with number theoretic questions.  While the open mathematical question 

whose "proof" serves as a metaphor for this moving drama is never revealed, it could very 

well be Goldbach's conjecture.   

[Proof] depicts the study of mathematics as a painful joy, not as the geek-making 

obsession of stereotype, but as human labor, both ennobling and humbling, by people 

who, like musicians or painters (or playwrights), can envision an elusive beauty in 

the universe and are therefore both enlivened by its pursuit and daunted by the 

commitment. It does this not by showing them at work but by showing them trying to 

live or cope when they can't, won't or simply aren't, and in doing so makes the 

argument that mathematics is a business for the common heart as well as the 

uncommon brain.
5
 

In the Golden Globe winning and Oscar nominated movie A Beautiful Mind [How], 

the mathematical insights of Nobel prize-winning mathematician John Nash (1928- ) are 

portrayed visually through whole number patterns seen in arrays of encrypted messages.
6
  

Although Nash’s insights were extraordinary, an ability to discover patterns and relationships 

like this are critical to most mathematicians’ work.  

 

What Good Is This? 
 

 In our exploration of number theory, you might wonder "what good is this?"  Some of 

the applications of number theory in the first few topics -- to art, architecure, biology, etc. – 

are immediate.  Fermat's Last Theorem, partition congruences, and the content of later topics 
                                                           
3
 As mathematicians choose not to call 1 a prime, they typically ignore the first few cases.  This is an instance 

where it makes more sense to consider 1 prime so no exclusions need to be made. 
4
 Indeed, Goldbach's conjecture is one of seven Millenium Prize Problems in mathematics, each of which carries 

a reward of $1 Million from the Clay Mathematics Institute.  [CMI] 
5 From the review "A common heart and uncommon brain," by Bruce Weber, New York Times, 24 May, 2000, 

E1,3.  
6
 It should be noted that the movie took some dramatic license in these scenes.  There is little evidence in the 

book on which the movie is based [Nas] that Nash worked with or thought about encryption of this sort. 



 12 

have applications and implications whose explorations are beyond the level of this text.  But a 

single example will provide some proper sense of the scope of number theory’s applications: 

secret codes or encryption as it is more properly known.   

Secret messages have a long history, at least as far back as the Caesar ciphers named 

after Julius Caesar.  In the Second World War the Allies superior encryption and decryption 

proved critical to their eventual victory.  Central to the Allies effort were the roles of the 

Navajo “Code Talkers” in keeping classified U.S. transmissions secret and of British 

mathematicians, lead by the brilliant but persecuted Alan Turing (1912-1954), in deciphering 

the German Enigma codes.
7
  In contemporary communication all classified and secure 

information is secured by encryption schemes like the RSA algorithm and the Advanced 

Encryption Standard
8
 which are based squarely on patterns, methods, and algorithms from 

number theory.  Without these number theoretic algorithms that are tested, developed, and 

refined by thousands of mathematicians and engineers, we could not send classified military 

information, we could not have secure ATM access, we could not have secure credit card 

transactions, we could not have secure email or Internet communication and data sharing, etc.  

In short, the Information Age in which we live would be a ghost of what it now is.  A broad 

variety of accessible material on encryption is available.  (See e.g. [Flan], [Sin], [Gar], [Bur; 

Ch. 7, §5], [Kah].)       

 

Recent Breakthroughs 
 

 In addition to the numerous applications of number theory that pervade the 

Information Age, there have been many stunning breakthroughs in the more theoretical side 

of number theory during the past decade.  In 1993, Andrew Wiles (1953- ) shocked the world 

by providing a proof of Fermat’s Last Theorem, not only the most famous and long-standing 

problem in number theory, but in all of mathematics.  We’ll learn more of the story of 

Fermat’s Last Theorem and the solution, an event that appeared on the front page of the New 

York Times
9
and resulted in Wiles being named as one of People Magazine’s “25 Most 

Intriguing People of 1993”.  We will also learn about Ken Ono's (??) surprising extensions, 

just before the turn of the new millennium, of the Indian mathematician Ramanujan's (1887-

1920) hundred year old work on partition congruences.   

 Although they just happened in the last decade, these mathematical breakthroughs will 

form key chapters in the long history of mathematics.  This challenges the misperceptions of 

mathematics as a static, completed, archaic field, doesn’t it?  

 

                                                           
7
 See Additional Investigations for more on the Navajo Code Talkers and Alan Turing. 

8
 Beginning in May of 2002, the National Institute for Standards and Technology specified the Advanced 

Encryption Scheme for use "by U.S. Government organizations (and others) to protect sensitive information."  

See csrc.nist.gov/ for more information. 
9
 24 June, 1993; the day after Wiles announced his proof at the end of three lectures he gave at a conference in 

Cambridge, England. 
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Yeah, But Can We Do It? 
 

 Assuming you are now intrigued by these historical, humanistic, and utilitarian aspects 

of number theory, you might wonder whether we can actually explore any significant number 

theory.  They’re offering million dollar prizes and people get their picture on the front page of 

the New York Times for solving these problems.  It sounds daunting.  Yet none other than 

G.H. Hardy (1877-1947), one of the foremost number theorists of all times, offers 

enthusiastic encouragement: 

The elementary theory of numbers should be one of the very best subjects for early 

mathematical instruction. It demands very little previous knowledge; its subject 

matter is tangible and familiar; the processes of reasoning which it employs are 

simple, general and few; and it is unique among the mathematical sciences in its 

appeal to natural human curiosity. A month's intelligent instruction in the theory of 

numbers ought to be twice as instructive, twice as useful, and at least ten times as 

entertaining as the same amount of ``calculus for engineers.''  

Indeed, despite its tantalizing, centuries-old problems and the extreme importance of 

its applications, there are great stories of number theory's accessibility.  Later in this chapter 

we will meet Rhiannon L. Weaver (??), a Penn State undergraduate who contributed a 

critical sequel to Ken Ono’s work on partition congruences.  And there is Sarah Flannery 

(1982 - ), an Irish high school student who gained international acclaim by developing an 

encryption algorithm that could have been a dramatic improvement over the universal 

encryption standard set by the RSA algorithm.  She was awarded Ireland's Young Scientist of 

the Year Award, awarded Europe's Young Scientist of the Year Award, and was featured in 

news media reports worldwide.  Her memoir, In Code:  A Mathematical Journey [Flan], is a 

wonderful account of the fascination that one can find in mathematics if one is provided with 

the opportunity and encouragement to explore it rather than the mundane task of memorizing 

and regurgitating it.  

So here’s your opportunity. 
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TOPIC 1 
 

Fibonacci Numbers 
 
     All is number. 

       --  The Pythagoreans 

 
 In mathematics, if a pattern occurs, we can go on to ask, Why does it occur? 

What does it signify? And we can find answers to these questions. In fact, for every 

pattern that appears, a mathematician feels [s]he ought to know why it appears. 

      --  W.W. Sawyer 

 
 Music is a hidden exercise in arithmetic, of a mind unconscious of dealing with 

numbers. 

      --  G.W. Leibniz 

 

 To everything there is a number.  There is one you.  Two eyes looking at this page.  

Three figures in the Christian Trinity.  Four legs on a chair.  Five petals on the Columbine 

flower.  Six legs on insects.  Seven is lucky.  Eight counter-clockwise spirals of seeds on 

some pinecones.  So many things to count.  And from this counting, remarkable relationships 

and connections emerge.  Some are merely spurious, curiosities to the numerologists who use 

number mysticism as astrologers use the signs of the Zodiac.  The Pythagoreans, the 

important sixth century B.C. sect of Greek mathematicians, and other important 

mathematicians have dabbled in numerology.  Yet it is a subject short on substance, long on 

coincidence and happenstance.
10

  When mathematicians see relationships and connections 

among numbers they seek to discover the underlying causal patterns and mechanisms.  For 

mathematics is the science of patterns.
11

  

 

A Remarkable Sequence of Numbers 
 

In the world of botany a particularly compelling pattern of numbers emerges.  Namely, 

when one counts the number of petals on many different types of flowers, the number of 

spirals that appear on the surface textures of many fruits, and the arrangement of leaves on 

tree branches they usually do not find a random collection of numbers.  Rather, the numbers 

5, 89, 13, 34, 8, 21, 55, 144, and 3 occur repeatedly and almost exclusively.  Arranged like 

this there might not seem anything striking other than the repeated occurrence of these 

numbers.  But, in numerical order the numbers 

                                                           
10

 See the wonderful book Numerology, or, What Pythagoras Wrought by Underwood Dudley, Mathematical 

Association of America, 1997 for a vigorous debunking of numerology. 
11

 While the statement "Mathematics is the science of patterns" is a bit of an oversimplification, contemporary 

mathematicians generally agree this is about as good as one can do in a single statement.  See the book [Dev1] of 

this name for a comprehensive discussion. 



 15 

3, 5, 8, 13, 21, 34, 55, 89, and 144 

form a clear pattern.  Each number is the sum of the two that come before it.  Using this 

defining characteristic, it is easy to extend this pattern both forward and backward: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,... 

These numbers are called the Fibonacci numbers.   

 Universally the Fibonacci numbers are denoted by 3,2,1,1 4321 ffff  and so 

on.  By definition, each new Fibonacci number is obtained by adding the previous two 

Fibonacci numbers.  Hence the defining relation of the Fibonacci numbers is expressed 

algebraically as 21 nnn fff  subject to the initial conditions 11f  and 12f .  Notice 

that this is a recurrence relation, to calculate a Fibonacci number you need to know the 

previous Fibonacci numbers. 

 In the Investigations below you will see a few of the varied situations in which the 

Fibonacci numbers arise.  It is interesting to note that the genesis of this sequence of numbers 

was not botanical despite its regular occurrence in this area.  Instead, recorded history 

attributes this sequence of numbers to the solution of a typically hokey word problem in an 

important mathematical text by a mathematician nicknamed Fibonacci. 

 

Fibonacci  
 

 Like all other areas of learning, mathematics was dormant during the long Dark Ages 

(circa 450 - 1000 A.D.) in Europe.  While mathematics awoke gradually over the two hundred 

years following the Dark Ages, its rejuvenation is marked most precisely by the works of 

Fibonacci.  Properly named Leonardo of Pisa (circa 1175-1250), this son of a well-known 

Italian merchant was better known as Fibonacci (a contraction of filus Bonaccio, "son of 

Bonaccio").  Fibonacci traveled widely as a student, learning methods of Arabic mathematics 

when studying in Northern Africa and learning the system of Hindu-Arabic numerals.  

Fibonacci assembled what he had learned into Liber abaci (literally "book of the abacus", 

meaning book of arithmetic), the most comprehensive book of arithmetic of its time.  It 

clearly laid out the benefits of the Hindu-Arabic numeral system and is partially responsible 

for its wide acceptance subsequently.  Fibonacci went on to publish several other books  

which focused mainly on arithmetic and algebra.  These textbooks and his success in 

mathematical competitions in the court of Emperor Frederick II established him as the 

premier mathematician of the age. 

 

Fibonacci's Problem  
 

 Despite his impact on the revival of mathematics and the acceptance of the Hindu-

Arabic numeral system, Fiboanacci's notoriety comes via a single problem from among the 

hundreds that he used in Liber abaci to illustrate the importance of the ideas laid out in this 

textbook.  Fibonacci's famous problem was the following: 
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How many pairs of rabbits will be produced in a year, beginning with a 

single pair, if in every month each pair bears a new pair which becomes 

productive from the second month on? 

If we represent each pair of juvenile rabbits by xy and each pair of mature rabbits by XY, we 

can trace the number of rabbit pairs over the months as follows: 

 

Month 1    xy     1 pair 

       
Month 2    XY     1 pair 

       \ 

Month 3    XY xy    2 pair 

    /     

Month 4  xy  XY XY    3 pair 

        /     \ 

Month 5  XY xy XY XY xy   5 pair 

 
Fig. 1.1  Fibonacci's Rabbits 

 

 It was from this somewhat hokey word problem, not their appearance in nature, that 

the Fibonacci numbers were first discovered.  Since their discovery they have, like breeding 

rabbits, flourished. 

 

Investigations 
 

I.  Fibonacci's Rabbits 
 

1.  Continue the breeding tree in Fig. 1.1 for three more months, checking that it yields the 

next three Fibonacci numbers.  (Hint:  You might find it useful to use different colors to 

distinguish mature versus juvenile rabbit pairs.) 

 

2.  Answer Fibonacci's question:  how many pairs will be produced in a year? 

 

 We would like to know why this pattern appears in this hypothetical population. 

 

3.  Determine the number of adult rabbit pairs in each of the months 2 - 8.  What do you 

notice? 

 

4.  How can the number of adult rabbit pairs in a given month be determined by the number of 

rabbit pairs in earlier months? 

 

5.  Determine the number of juvenile rabbit pairs in each of the months 2 - 8.  What do you 

notice? 

 

6.  How can the number of juvenile rabbit pairs in a given month be determined by the 

number of rabbit pairs in earlier months?  Explain why this happens. 
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7.  Use 3) - 6) to explain why the number of pairs of rabbits must also follow the defining 

relation  21 nnn fff  of the Fibonacci numbers. 

 

8.  Determine the twentieth Fibonacci number. 

 

9.  How hard would it be to determine the fiftieth Fibonacci number?  (Note:  In Topic 2 we 

will revisit this problem.)  
 

 

  
 

Fig 1.2 Spirals in a Pinecone and a Sunflower 

 

II:  Fibonacci Spirals in Nature 
 

 Above are images of a pinecone and a sunflower.  The seeds that make up both 

emerge from the center, where the cone and flower are attached to the plant.  As they develop 

at this meristem, the seeds (which are actually cone scales or fruits in this case and are known 

collectively as primordia in their developmental phase) grow and move outward away from 

the meristem.  As they do so they form a regular pattern.  Your eye should see spiral arcs 

made from sequences of adjacent seeds - some that move away from the meristem in 

clockwise manner and others that move away from the meristem in a counter-clockwise 

manner. 

 In the appendix there are several copies of these images.   

 

10.  Using a marker, color one of the spiral arcs in the pinecone that moves in a clockwise 

manner from the outer edge of the image to the center of the meristem.  You will note that 

the spiral arc doesn't continue perfectly at the center of the meristem.  Skip over the spiral 

that is adjacent to the one you just colored and color the next one that appears to have the 

same orientation after that.  Continue this way around the pinecone until you have colored 

as many non-adjacent spiral arcs in the clockwise family as you can.  How many 

clockwise spiral arcs are there? 

 

11.  Using a different color marker and another copy of the image of the pinecone, color the 

counter-clockwise family of spiral arcs in much the same way that you colored the 

clockwise family in 10).  How many counter-clockwise spiral arcs are there? 
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12.  Repeat 10) for the sunflower. 

 

13.  Repeat 11) for the sunflower. 

 

14.  What is surprising about your answers to 10) - 13)? 

 

15.  Pinecones and sunflowers come in many different varieties, some more tightly packed 

and some more openly packed.  Would you be surprised to learn that the number of spiral 

arcs in virtually all pinecones and sunflowers are Fibonacci numbers?  Indeed, Fibonacci 

numbers appear often in flowers and seed-pods.  Find several other specific examples. 

 

III:  Honeybee Family Trees 
 

 A typical honeybee hive consists of a single Queen, upwards of 200 drones, and 

20,000 or more worker bees.  The Queen and worker bees are female, while the drones are 

male.  All offspring are produced by the Queen, the worker bees do not reproduce.  The 

drones' role is to help in reproduction.  Strangely, fertilized eggs result in worker bees while 

unfertilized eggs result in drones.  That is, worker bees have a mother, the Queen, and a 

father, a drone.  On the other hand, drones only have a mother, the Queen.   

 

16.  Using the standard symbols for male and female, ♂ and ♀ respectively, make a family 

tree of a male bee that goes back five generations. 

 

17.  Use the family tree in 16) to determine the number of i) parents, ii) grandparents, iii) 

great-grandparents, iv) great-great-grandparents, and v) great-great-great-grandparents 

each male bee has.  What do you notice about these numbers? 

 

18.  Using the standard symbols for male and female, ♂ and ♀ respectively, make a family 

tree of a worker bee that goes back five generations. 
 

19.  Use the family tree in 18) to determine the number of i) parents, ii) grandparents, iii) 

great-grandparents, iv) great-great-grandparents, and v) great-great-great-grandparents 

each worker bee has.  What do you notice about these numbers? 

 

In mentioning honeybees one would be remiss if they did not mention two other 

mathematical marvels involving honeybees.  First, bees build their honeycomb in hexagonal 

cells because this regular tessellation provides the optimal storage for a given use of wax.  I.e. 

bees are mathematicians of some merit. 

 More impressively, honeybees communicate the location of pollen sources via an 

intricate waggle dance.  This dance was successfully translated only during middle of the 

twentieth century.  The ability of the honeybee to communicate in such a sophisticated 

grammar remained a mystery until recently.  In the mid 1990's the mathematician Barbara 

Shipman (??) discovered that the grammar for the waggle dance language can be described 



 19 

by the same higher dimensional flag manifolds that are critical tools in the description of 

certain quantum mechanical fields and quantum mechanical interactions.
12

   

As Galileo said, “The universe stands continually open to our gaze, but it cannot be 

understood unless one first learns to comprehend the language and interpret the characters in 

which it is written. It is written in the language of mathematics.  “Our ability to see this in any 

facet of the natural, physical, and human world is limited only by our mathematical 

imagination.  Shipman just happened to be a topologist studying higher dimensional flag 

manifolds and the daughter of a beekeeper who learned about the waggle dance from her 

father as a small child. 

 

IV:  Plant Growth 
 

Fibonacci’s rabbit problem certainly is not a realistic problem.  Rabbits do not produce 

in such a regular way and they also die.  Nonetheless, it is not difficult to envision situations 

where such growth is quite realistic.   

Consider the growth of a plant.  When a plant grows a new shoot it is likely that this 

shoot is not immediately ready to produce its own new shoot - it has to gain sufficient strength 

to support a new shoot.  Suppose the shoot has to grow two weeks before it can give rise to 

exactly one new shoot and then it is able to grow one new shoot each month thereafter.  One 

might expect that each shoot will behave in this same way.  A plant with a growth pattern like 

this, four weeks after germination, will look as follows: 

 

Fig. 1.3  A four week old Fibonacci Plant 

 

20.  Draw the plant in Fig. 1.3 after six weeks. 

 

21.  Draw this plant in Fig. 1.3 after nine weeks.  (Note:  You might use the same coloring 

techniques as you applied with the rabbits to help you.) 

                                                           
12

 The article "Quantum honeybees" by Adam Frank, Discover, November, 1997, pp. 80-87 has an accessible 

description of Shipman's discoveries. 
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22.  What do you notice about the number of shoots on this plant at the end of any given 

week? 

 

23.  Explain why, in this situation, the number of shoots must always be a Fibonacci number. 

 

One plant that exhibits this type of growth is the sneezewort. 

 

V:  Two Fibonacci Identities 
 

One of the reasons for mathematicians’ great fascination with Ficonacci numbers is 

the ubiquity of the relationships among them.  In fact, there is an entire journal devoted to the 

Fibonacci numbers; it is called the Fibonacci Quarterly.   

You will investigate two well-known identities here. 

 

24.  Determine the sum of the first three Fibonacci numbers; i.e. 1 + 1 + 2 = ? 

 

25.  Determine the sum of the first four Fibonacci numbers. 

 

26.  Determine the sum of the first five Fibonacci numbers. 

 

27.  Determine the sum of the first six Fibonacci numbers. 

 

28.  Determine the sum of the first seven Fibonacci numbers. 

 

29.  How are these sums in 24) - 28) related to the Fibonacci numbers?  State a conjecture 

regarding the value of the sum of the first n Fibonacci numbers. 

 

 Pascal’s triangle is the triangular array of numbers given below: 
 

1 

1 1 

1 2 1 

1 3 3 1 

               
 

Fig. 1.4  Pascal's Triangle 

 

Each entry in this triangular array is obtained by adding the two numbers in the previous row 

that are closest to the entry being obtained. 

 

30.  Determine the next three rows in Pascal’s triangle. 

 

 The importance of Pascal’s triangle lies in the fact that it catalogues the binomial 

coefficients.  For example, when expanding 
2)( yx   one obtains 

22 121 yxyx  and these 

coefficients are exactly those in the third row of Pascal’s triangle. 
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31.  Expand 3)( yx and show that the coefficients are correctly given by the fourth row of 

Pascal’s triangle. 

 

32.  Make a conjecture about the expansion of 6)( yx . 

 

33.  Add the entries in the individual rows of Pascal’s triangle.  What pattern do you see? 

 

One cannot add the columns or diagonals of Pascal’s triangle, they go on forever.  But 

one can add the shallow diagonals.  The first shallow diagonal contains the left-most 1 in the 

fourth row and the 2 in the third row.  The second shallow diagonal contains the left-most 1 in 

the fifth row, the left-most 3 in the fourth row, and the right-most 1 in the third row. 

 

34.  What are the sums of the shallow diagonals just described? 
 

35.  What numbers make up the third shallow diagonal and what is the sum of these numbers? 

 

36.  What numbers make up the fourth shallow diagonal and what is the sum of these 

numbers? 

 

37.  What numbers make up the fifth shallow diagonal and what is the sum of these numbers? 

 

38.  What do you notice about the sums of the shallow diagonals? 

 

 There are many other fabulous patterns hidden in Pascal’s triangle.  The interested 

reader is invited to look under Polya block walking in any book on combinatorics for a very 

interesting way to generate these patterns. 

 

VI:  The Mandelbrot Set 
 

 Pictured in Fig. 1.5, the Mandelbrot set is one of the most famous sets in 

mathematics.  It is an important example of a fractal - a mathematical object that is 

approximately self-similar across an infinity of scales.  This set was named after Benoit 

Mandelbrot (1924- ) who, as an IBM researcher in the 1970’s, was the first to use computers 

to visually explore the complex mathematical objects that had been first investigated by the 

French mathematicians Pierre Fatou (1878-1929) and Gaston Julia (1893-1978).  Fractals 

play a critical role in many natural and physical processes.  A wealth of sophisticated, 

beautiful, interactive Internet sites on fractals are available as are accessible texts and texts 

that could be used in parallel with this text.
13

 

                                                           
13

 The classic book in this field in Mandelbrot's The Fractal Geometry of Nature, W.H. Freeman, 1983.  Chaos 

and Fractals:  New Frontiers in Science by Heinz-Otto Peitgen, Martmust Jurgens, and Dietmar Saupe, Springer-

Verlag, 1992 is a beautiful book as well.  The text Chaos Under Control:  The Art and Science of Complexity by 

David Peak and Michael Frame, W.H. Freeman, 1994 was designed specifically for mathematics for liberal arts 

courses and is most highly recommended for this audience.  Internet sites abound.  In addition to the two above, 

the Dynamical Systems and Technology Project at Boston University -- http://math.bu.edu/DYSYS/ and Mary 
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 You will need to work through this section with the help of the Internet.  In particular, 

you will need interactive scripts that enable you to view microscopic features of the 

Mandelbrot set by zooming in repeatedly.  There are many such sites.  One I would 

recommend is: 

Julia and Mandelbrot Explorer located at http://aleph0.clarku.edu/~djoyce/julia/explorer.html  

You must be aware that as you zoom in you will lose resolution when you employ the default 

settings.  To regain resolution after repeatedly zooming in you will have to increase the 

number of iterations that the script uses to produce the images. 

 Notice that the Mandelbrot set looks a bit like a beetle that has smaller beetles that 

appear regularly around its boundary.  No matter how far you zoom in you will continue to 

see these structures which are called bulbs in the mathematical literature.  In the figure above, 

the rear cusp of the Mandelbrot, the dimple on the right edge at 3:00, is called bulb 1.  The 

front bud, the largest, circular bud on the left at 9:00, is called bulb 2.  Label these bulbs.  If 

we locate the largest bulb along the top half of the Mandelbrot set between the cusp labeled 1 

and the bulb labeled 2 we see it is located right at the top of the Mandelbrot set, at 12:00.  At 

the tip of this bulb there is a thin filament which splits into two branches.  These three 

filaments play a critical role in this bud's mathematical significance so we will label this bulb 

3. 

 

 
 

Fig. 1.5  The Mandelbrot Set 

 

39.  Locate the largest bulb along the top half of the Mandelbrot set between the bulb labeled 

2 and the bulb labeled 3.  Zoom in on this bulb so you can determine the number of 

                                                                                                                                                                                     

Ann Connors Exploring Fractals site -- http://www.math.umass.edu/~mconnors/fractal/fractal.html are excellent 

places to start. 
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filaments that make up the starburst at the tip of this bulb.  This number will be the label 

for this bulb. 

 

40.  Now locate the largest bulb between the bulb labeled 3 and the one you just found in 

investigation 39).  Zoom in on this bulb so you can determine the number of filaments that 

make up the starburst at the tip of this bulb.  This number will be the label for this bulb. 

 

41.  Repeat 40), locating and labeling the largest bulb that appears between the bulbs you 

found in 39) and 40). 

 

42.  Repeat 40) again, locating and labeling the largest bulb that appears between the bulbs 

you found in 40) and 41). 

 

43.  Repeat 40) again, locating and labeling the largest bulb that appears between the bulbs 

you found in 41) and 42). 

 

44.  Are you surprised by the pattern you are finding? 

 

45.  Spend a few minutes zooming in on the filaments off the end of any single bud you have 

considered.  Are the filaments just whisps of fractal dust or are there surprises hidden in 

these filaments?  Explain.     

 

VII:  Fibonacci Numbers Everywhere? 
 

 Fibonacci numbers certainly capture the imagination.  Yet they have achieved an 

almost cult-like following, especially on the Internet where all sorts of mathematical 

aficionados pay homage to them.  Some questionable occurrences of Fibonacci numbers are 

mixed below with some meritorious occurrences.  Which is which?   

 

46.  You have 2 hands.  2 is a Fibonacci number.  What else about your hands exude 

Fibonacci numbers? 

 

47.  Slice open an apple, banana, or tomato.  There are structures to count.  Are there numbers 

in each of these structures that are Fibonacci?  What about other fruits and vegetables? 

 

48.  Consider the keys on a piano that make up an octave, as pictured in Fig. 1.6.  Where do 

you see Fibonacci numbers here? 

 
 

Fig. 1.6  An octave on a piano keyboard 
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49.  In basketball there are five players on each team.  Five is a Fibonacci number.  There are 

many other Fibonacci numbers related to the players, positions, and scoring.  Describe 

them. 

 

50.  Find or make up an example of your own where Ficonacci numbers occur.  Make sure 

your example is not related to those that we are studying in the Sections above and below.   

 

 The appearance of the Fibonacci numbers in the examples above seem spurious.  In 

some cases they are.  In some they are not.  In fact, Fibonacci numbers occur routinely in 

music.  They have played important roles in the music of Mozart, Beethoven, Bartok, and 

Schillinger.
14

  The patterns of music are harmoniously connected to the patterns of 

mathematics.    

 

51.  The mathematician Richard Guy (??) tells us “There aren’t enough small numbers to 

meet the many demands made of them.”  How does this idea help us understand the 

apparently spurious appearance of Fibonacci numbers in our hands, in basketball, and in 

other surprising situations? 

 

VIII:  Phyllotaxis 
 

Phyllotaxis is the from the Greek phyllo, meaning leaf, and taxis, meaning 

arrangement.  It means the study of the arrangement of leaves in relation to a stem or one 

another.  In the appendix of this book, there is a template for a specific arrangement of leaves 

on a stem.  Either copy or cut out this template.   

The numbered rectangular sections serve as the leaves and they are attached to the 

main stem by a smaller stems represented by large dots at the base of each rectangle.  

Complete the following tasks to complete your model stem that will help you discover the 

mathematical aspects of phyllotaxis: 

 Copy this template or remove it from you book. 

 Draw a series of parallel lines through the stems (dots) at the bases of the leaves 

(rectangles) which connect:  leaf 6 to leaf 5, leaf 4 to leaf 3, and leaf 2 to leaf 1. 

 With a different color pen or marker, draw a series of parallel lines through the stems 

(dots) at the bases of the leaves (rectangles) which connect:  leaf 1 to leaf 2 to leaf 3 

and leaf 4 to leaf 5 to leaf 6. 

 Cut the template along all of the solid lines. 

 Roll the template lengthwise into a cylinder, joining Edge B to Edge A, with the 

excess along Edge B rolled inside, and join the two edges with tape. 

 Bend the leaves (rectangles) down along the dotted lines at their bases. 

                                                           
14

 See e.g. Tibor Bachmann and Peter J. Bachmann, "An analysis of Bela Bartok's music through Fibonaccian 

numbers and the golden mean", The Musical Quarterly, ??;  Jonathan Kramer, "The Fibonacci series in twentieth 

century music", Journal of Music Theory, vol. 17, no. 1, Spring 1973, pp. 110 - 149;  Truid Hammel Garland and 

Charity Vaughan Kahn, Chapter 8:  The Curiosities, in Math and Music:  Harmonious Connections, Dale 

Seymour Publications, 1995. 
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This resulting model is a model of a stem in which there are five leaves per tier.  

leaves 1 - 5 make up this first tier and leaf 6 begins the next tier of leaves.  You should 

position your stem to stand vertically with the smallest leaf, leaf 6, at the top and the largest 

leaf, leaf 1, at the bottom. 

 

52.  Draw a top view of this stem, placing the leaves carefully in their correct position, 

possibly shrinking the diameter of the stem slightly to give it a more appropriate scale, 

and numbering the leaves so the order of their appearance can be seen from your top view. 

 

53.  Determine the angle, measured counter-clockwise direction, between successive leaves 

(e.g. leaf 1 and leaf 2) in this arrangement. 

 

54.  Traverse the leaves in order, from 1 - 5, in a counter-clockwise fashion when viewed 

from above.  Describe this path.  For example, how many complete revolutions must you 

make before you arrive back at your starting place where the 6
th

 leaf will start the next tier 

of leaves?  And how is your path illustrated on your model stem? 

 

55.  Use 54) to determine the fraction of a complete revolution between successive leaves.  

Compare with 53). 

 

56.  In what ways might this leaf arrangement be beneficial to this plant? 

 

57.  Determine the angle, measured clockwise direction, between successive leaves in this 

arrangement. 

 

58.  Traverse the leaves in order, from 1 - 5, in a clockwise fashion when viewed from above.  

Describe this path as in 54). 

 

59.  Use 58) to determine the fraction of a complete revolution between successive leaves.  

Compare with 57). 

 

 The leaf arrangement in our model is called a 2/5 phyllotactic ratio. 

 

60.  You should see the defining relation of Fibonacci numbers at work in our model.  

Explain. 

 

Suppose we were to arrange leaves so there were eight leaves per tier and there were 

three complete counter-clockwise revolutions, when viewed from above, before you arrive 

back at your starting place where the 9
th

 leaf would start the next tier of leaves.  Such an 

arrangement would be referred to as an arrangement with a 3/8 phyllotactic ratio.   

 

61.  Draw a top view of this arrangement, much like you did in 52). 

 

62.  What would the angle between successive leaves in this arrangement have to be? 
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63.  If you traverse the leaves in order, from 1 - 8, in a clockwise fashion when viewed from 

above, how many complete revolutions must you make before you arrive back at your 

starting place where the 9
th

 leaf will start the next tier of leaves?  What do you notice 

about this number? 

 

64.  Will the 3/8 phyllotactic ratio result in a similar connection to the Fibonacci numbers that 

you described in 60)?  Explain.    

 

65.  Would this leaf arrangement provide the same type of benefits to the plant as the 2/5 ratio 

did?  If so, what specific attributes of the plant might determine whether a 2/5 or 3/8 ratio 

was more appropriate? 

 

66.  Describe an arrangement with a 5/13 phyllotactic ratio in detail.  Must it continue the 

pattern we have observed in 60) and 64)? 

 

67.  What would the next such phyllotactic ratio be?  Describe an arrangement with this ratio 

in detail.  Must it continue the pattern we have observed in 60) and 64)? 

 

 For trees that have leaves that are arranged in spirals, this type of Fibonacci 

phyllotaxis is the rule.  Some phyllotactic ratios for common trees are: 

1/2 Elm and Linden 

1/3 Beech and Hazel 

2/5 Oak, Cherry, and Apple 

3/8 Poplar and Rose 

5/13 Willow and Almond 

We should admit some caution however.  As the important geometer H.S.M. Coxeter 

(1907 - 2003) said: 

“It should be frankly admitted that in some plants the numbers do not belong to the 

sequence of f’s [Fibonacci numbers] but to the sequence of g’s [Lucas numbers] or 

even to the still more anomalous sequences 3, 1, 4, 5, 9,... or 5, 2, 7, 9, 16,...  Thus we 

must face the fact that phyllotaxis is really not a universal law but only a fascinatingly 

prevalent tendency.”   

 

68.  Let us try to break away from the Fibonacci numbers and make an arrangement with a 

4/10 phyllotactic ratio.  Describe this arrangement and explain whether it would be as 

beneficial as those above or not. 

 

69.  Describe a phyllotactic ratio that does not involve Fibonacci numbers but nonetheless 

avoids the difficulty in 68).  Show that when you include the number of complete 

revolutions needed to traverse the tier of leaves in the clockwise direction, when viewed 

from above, this number together with the two numbers in the ratio satisfy the defining 

relation for Fibonacci numbers.  
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Fig. 1.7  Norway Spruce primordia development 

 

IX.  Fibonacci Spirals from Optimal Packing 
 

As noted in Section I, objects like pinecones are made up of primordia which originate 

at a meristem and then move outward from the center of the meristem as new promordia 

develop.  Mathematicians have long sought to understand the mechanics of this process and 

there has been much recent progress.  An excellent description of some of this research, 

related on-line tutorials, and impressive interactive applets for exploration are available from 

Phyllotaxis - An Interactive Site for the Mathematical Study of Plant Pattern Formation which 

was developed at Smith College and is available at the URL 

www.math.smith.edu/~phyllo/index.html .   

In this section we will briefly investigate one of the mechanisms for the development 

of spiral patterns.  The photograph on the left of Fig. 1.7 is scanning electron micrograph of a 

Norway Spruce shoot.  On the right is a schematic of this micrograph.  The primordia are 

labeled according to age, those with higher numbers appeared longer ago.  The location of the 

genesis of each new primordia is, in this model, determined by the least crowded space at the 

edge of the meristem.   

 In the appendix there are several copies of the schematic.  Use them as needed to 

complete the investigations below. 

 

70.  By finding the least crowded spaces, determine where the next five primordia are likely 

to appear.  Call them 0, -1, -2, -3, and -4 and draw them in on one of the copies of the 

schematic. 

 

71.  Why would it be beneficial for plants to develop in this way, with the primordia 

appearing in the least crowded space along the edge of the meristem at each stage in their 

development? 
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72.  In looking at the schematic, you should see a pattern of spiral arcs in the counter-

clockwise direction.  On a copy of the schematic, color the arms of these spiral arcs just as 

you did in Section II.  How many counter-clockwise spiral arcs are there? 

 

73.  What do you notice about the identifying numbers of successive primordia along the arms 

of each of these spiral arcs? 

 

74.  In looking at the schematic, you should also see a pattern of spiral arcs in the clockwise 

direction.  On a copy of the schematic, color the arms of these spiral arcs just as you did in 

Section II.  How many clockwise spirals are there? 

 

75.  What do you notice about the identifying numbers of successive primordia along the arms 

of each of these spiral arcs? 

 

76.  Similarly, you should see an almost radial pattern of arcs forming from the edge of the 

meristem where successive primordia differ by a constant Fibonacci number.  Color in the 

arcs of this pattern much like you did above.  How many of these radial arcs are there? 
 

 Of course, the rate of growth plays an important role in determining which Fibonacci 

number is evident in a given spiral or configuration of petals.  For an interesting illustration of 

how growth rate changes the number of spirals, see Figs. 4.32 - 4.35 on pp. 119-21 of [CoGu]. 

   

77.  On a copy of the schematic, put a point in the center of the meristem.  Then draw lines 

from:  the center point to the center of primordia 1; the center point to the center of  

primordia 2;  the center point to the center of primordia 3; and the center point to the 

center of primordia 4.  Use these lines to measure the angle between primordia 1 and 

primordia 2; primordia 2 and primordia 3; primordia 3 and primordia 4.  How are these 

angles related to others that appear in this topic? 

 

 The angle you found in Investigation 77) is called the Golden Angle.  It is a sibling of 

the Golden Ratio - our next topic. 
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TOPIC 2 
 

The Golden Ratio 
 

 Geometry has two great treasures; one is the theorem of Pythagoras; the other, 

the division of a line into extreme and mean ratio.  The first we may compare to a 

measure of gold; the second we may name a precious jewel. 

-- Johannes Kepler 

 

Mighty is geometry; joined with art, resistless. 

      --  Euripedes 

 
 We are all familiar with the counting numbers 1, 2, 3, …  We are also familiar with 

the integers ..., -2, -1, 0, 1, 2,…  In working with circles and trigonometry we have all used 

the remarkable number pi, denoted by the Greek letter that it is named after:   

 = 3.14159265...  Many of us are familiar with the base of the natural logarithm, the 

number e = 2.71828182…,
15

 which is used in the analysis of probabilities, interest rates, 

population growth and many other important processes.  Some of us might even have 

experience with the number 1i  which is the base of the imaginary or complex number 

system.  Much less well-known is the Golden Ratio which is the number denoted by the 

Greek letter phi:  

 = 
2

51
=1.61803398... 

Yet the Golden Ratio was widely used before the discovery of both e and i.  Moreover, it was 

widely used before there was any notion of zero or negative numbers!  

 

   
 

Fig. 2.1  The Great Pyramid of Khufu (Cheops); with a visitor for scale. 

                                                           
15

 We denote this constant by the letter e in honor of the Swiss mathematician Euler who was the first to 

investigate its remarkable properties. 
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The Golden Ratio 
 

It is claimed by many that the Golden Ratio played a prominent role in the 

construction of the great pyramids and the Greek Parthenon, the design of the United Nations 

buildings, in the paintings of da Vinci and Durer, in the music of Bartok and Bach, and 

psychological studies have even suggested that it is the most pleasing ratio there is -- perhaps 

explaining its use in architecture, art and music.
16

  In fact, the Greek letter  is used to denote 

this constant in honor of the Greek artist Phidias who used the Golden Ratio in his famous 

sculptures.
17

 

Strange this, a number that is widely known by artists, architects, biologists, and 

musicians, yet it is rarely considered in mathematics courses.  As this is a mathematics for 

liberal arts course, this seems like a perfect opportunity. 

 

 
 

Fig. 2.2  The Greek Parthenon 

 

Division into Extreme and Mean Ratio 
 

As noted above, the Golden Ratio is the number  = 
2

51
.  The notion of the 

Golden Ratio, although not so-called at that time, was first introduced by the ancient Greeks.  

As Greek mathematics was based solely on geometric methods, the Golden Ratio was 

introduced geometrically.  It arose from the division of a line segment into two special 

segments.  This process is called the division of a line into extreme and mean ratio; it 

appeared as Definition 3 in Book VI of Euclid's Elements
18

: 

                                                           
16

 See, for example, the section "Experimental Aesthetics" in Chapter V of The Divine Proportion by H.E. 

Huntely.  There is considerable debate over the validity of these claims.  See the Perspectives section of this 

topic for more details. 
17

 Ibid, p. 25. 
18

 One of the most famous and widely read books of all time. 
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A straight line is said to have been cut in extreme and mean ratio when, as 

the whole line is to the greater segment, so is the greater to the less. 

Thus the Golden Ratio is the precious jewel of geometry that Kepler spoke of at the outset of 

this lesson. 

How can we understand this definition?  For a given line to be cut in extreme and 

mean ratio we must check that two ratios are equal.  In his Elements (Book VI, Proposition 

30), Euclid showed that any line segment can be so divided using straightedge and compass – 

the allowable tools of Greek geometry.  In a slightly different spirit, although still geometric 

in nature, we can perform this division using straightedge and compass by following the steps 

in the diagram below: 

 
Fig. 2.3  Geometric derivation of the Golden Ratio. 

 

To see that we have indeed succeeded, we need to check the equality of the specified 

ratios.  If we apply the Pythagorean theorem to the right triangle we see that 
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2
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AG

AB
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Taking square roots and solving, we see that ABAG
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19

 Note that this is one of the few places that your skills in rationalizing the denominator might serve you well. 
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2
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15

AB

AB
as well. 

 

Hence both ratios are equal, i.e. the line has been divided into mean and extreme ratio, and 

both ratios are equal to the Golden Ratio! 

Now all this seems like a rather obtuse definition.  But remember,  is defined as a 

ratio as well -- the ratio of a circle's perimeter to its diameter.  So just give  a little bit of 

time. 

 

Investigations 
 

I.  The Golden Ratio Algebraically 
 

 Algebra as we know it is a fairly recent mathematical invention, beginning its modern 

development in the latter part of the sixteenth century, and was not available to the ancient 

Greeks who used geometry as their universal language for mathematical analysis.  However, 

we can find the Golden Ratio rather easily using basic high school algebra. 

 Consider the line segment below.  We would like to find a value of x > 1 so that this 

line segment is divided into extreme and mean ratio.   

 

+
___________________________________

+
_____________________

+
 

x     1 
 

Fig. 2.4  Algebraic derivation of the Golden Ratio. 

 

1.  In terms of 1 and x, find expressions for the two ratios that we need to compare to see if 

the line is divided into extreme and mean ratio.  Equate these ratios. 

 

2.  Use algebra to simplify the equation in 1) into an equation that does not involve ratios.  

Then collect all nonzero terms to the left-hand side of the equation. 

 

 The function on the left-hand side of the equation in 2) is called a defining function, 

and you can probably guess that it will define the Golden Ratio. 

  

3.  Carefully graph the defining function from 2) by hand, using a graphing calculator, 

spreadsheet, or computer algebra system. 

 

4.  Use your graph in 3) to determine how many solutions the equation in 2) has. 

 

5.  Using repeated estimation, the ZOOM IN feature on your graphing calculator, numerical 

estimation on a spreadsheet, or numerical solution via a computer algebra system, find the 

solution x with x > 1 to the equation in 2).  Surprised? 
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6.  Using algebraic techniques from high school algebra, solve the equation in 2) exactly.  

Surprised? 

 

 
 

Fig. 2.5  The United Nations Secretariat Building. 

 

II.  Nested Radicals 
 

7.  Use your calculator to determine the values of ,11,1 and 111 correct to 

several decimal places. 

 

8.  Could you continue taking repeated radicals as you were in 7)?  If so, make a table of the 

values of the first ten repeated radicals correct to several decimals places.  If not, explain 

why this process is limited. 

 

 At first glance it might seem that the infinitely repeated radical  

...11111  

is too bizarre to be evaluated or even to make sense.  However, people are quick to accept the 

infinitely-repeated decimal 0.333… as an exact value for the fraction .
3

1
   So suspend 

judgment on whether an infinitely-repeated radical, like the one above, makes any sense just 

long enough to… 

 

9.  …hazard a guess of the numerical identity of this infinite radical. 

 

 Let’s see if we can determine the identity of this infinite object precisely. 
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10.  Denote the unknown, infinitely-repeated radical by ...11111x .  In 

simplified form, what is x
2
? 

 

11.  Using 1 and x, express x
2
 as an algebraic expression without using any radicals. 

 

12.  Use your answer to 11) and earlier investigations to determine the value of x exactly.  

Does your answer agree with your guess in 9)?  Explain.  

 

III.  Continued Fractions 
 

 The ancient Greeks thought that all numbers could be expressed as fractions.  In fact, 

their mathematical system was founded on this belief.  When it was discovered that 2  , the 

length of the diagonal of a 1 by 1 square, could not be written as a fraction it was a 

tremendous setback to their sophisticated mathematical program.  So great was the impact 

that the discoverer was, according to legend, drowned. 

 Many attempts were made to repair this difficulty.  One was to allow a more general 

form of fractions called continued fractions.  Some examples of continued fractions are 

4

3

3

4

1

3

1
1

1
 ,   2

2

3

3

2

1
2

3
 

and even Bombelli's
20

 remarkable 

...6

4
6

4
6

4
6

4
313 . 

Those of you who find arithmetic with fractions frustrating can certainly be grateful to the 

Babylonians for the decimal numbers which saved you from arithmetic with continued 

fractions. 

 

13.  Convert the continued fraction 1+

1

1
1

1
 into a standard fraction. 

 

                                                           
20

 Discovered in 1572.  See e.g. [Bur, p. 279]. 
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14. Convert the continued fraction 

1

1
1

1
1

1
1  into a standard fraction. 

 

15. Convert the continued fraction 

1

1
1

1
1

1
1

1
1  into a standard fraction. 

 

16. Write the continued fraction that would come next in the pattern illustrated by 

investigations 13) - 15).  Then convert this continued fraction into a standard fraction. 

 

17. Write the continued fraction that would come next in the pattern illustrated by 

investigations 13) - 16).  Then convert this continued fraction into a standard fraction. 

 

18. Write the continued fraction that would come next in the pattern illustrated by 

investigations 13) - 17).  Then convert this continued fraction into a standard fraction. 

 

19.  The numerators and denominators in the standard fractions that answer 13) - 18) form an 

important pattern.  What pattern is this and how is it related to other material we have 

considered in this course? 

 

20.  Make a table that gives the decimal values of each of the fractions in 13) - 18) correct to 

several decimal places. 

 

 Of all infinite continued fractions, 

...1

1
1

1
1

1
1

1
1  seems the simplest.  

 

21.  Does the data in 20) suggest a value for 

...1

1
1

1
1

1
1

1
1 ?  Explain. 

 

 Let’s see if we can determine the identity of this infinite object precisely, as we did 

with the infinite radical above. 
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22.  Denote the unknown continued fraction by 

...1

1
1

1
1

1
1

1
1x .  Using only 1 and x, 

express x as an algebraic expression containing only standard fractions. 

 

23.  Simplify your equation in 22) to find an equation involving x that is fraction-free. 

 

24.  Use your answer in 23) and earlier problems to determine the value of x exactly.  Does 

your answer agree with 21)?  Explain. 

 

 
 

Fig. 2.6  Nautilus shell. 

 

IV.  Powers of  

25.  Make a table of values of the function 

n

nb
2

51

5

1
 for n = 1, 2, 3,…, 8. 

 

26.  How close are these values to whole numbers?  Is this surprising?  Explain. 

 

27.  What is even more surprising about these numbers? 

 

 In fact, the function 

nn

nB
2

51

5

1

2

51

5

1
is called Binet's formula.  Its 

values are always whole numbers -- in fact, exactly those special whole numbers that you 

should have noticed in 27). 

 

28.  In Topic 1 you were asked how hard it would be to determine the fiftieth Ficonacci 

number.  Can you determine it now? 
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V.  Golden Rectangles 
 

 A rectangle is called a Golden Rectangle if the ratio of longer side to the shorter side 

is the Golden Ratio.  The studies noted above suggest that it is the most pleasing of all 

possible rectangular shapes.  The superstructure of the Parthenon forms a Golden Rectangle 

as does the face of "Mona Lisa" in one of the most well-known paintings of all time.  

Below is a rectangle whose width is  and whose height is 1.  Two circular arcs, AF 

and FG, and two perpendiculars, EF and GH, have been drawn in the rectangle. 

 
 

Fig. 2.7  First Stages of the Golden Spiral. 

 

29.  Is the rectangle ABCD a Golden Rectangle?  Explain. 

 

30.  Is the smaller rectangle CDEF a Golden Rectangle?  Explain in detail. 

 

31.  Is the even smaller rectangle DEHG a Golden Rectangle?  Explain in detail. 

 

32.  Following the evident pattern, draw in another circular arc and another perpendicular.  Is 

the even smaller rectangle that results a Golden Rectangle as well?  Explain in detail.   

 

33.  Do you think you could repeat the process in 32) again and again?  Is there any limit?  

Explain. 

 

34.  Draw the sequence of circular arcs that would be created when one continues this 

process.  Is the resulting figure aesthetically pleasing?   

 

 In fact, the shape that you drew in 34) is the shape of nautilus shells (see Fig. 2.6), one 

of many natural organisms whose growth is controlled by the Golden Ratio.
21

  Additionally, 

the process that you carried out in 33) shows that, in some sense, Golden Rectangles are 

fractals.
22 

                                                           
21

 See the Perspectives section at the end of this topic for details and references. 
22

 Loosely speaking, a fractal is a geometric shape which reveals interesting fine structure, often self-similar in 

nature, which recurs indefinitely as it is magnified.  Fractals have become quite popular and both non-technical 
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VI.  Star Pentagrams 
 

The figure below is called a star pentagram.  It was the sacred symbol of the 

Pythagoreans, a cult-like group of important historical import in mathematics. 

 

 
 

Fig. 2.8  Star Pentagram. 
 

35.  Measure each of the line segments of different length in the star pentagram and make a 

chart giving their lengths. 

 

36.  Are there any pairs of line segments in the star pentagram that form a golden ratio?  If so, 

list them. 

 

37.  Could you draw another star pentagram somewhere within the given star pentagram?  If 

so, provide an illustration.  If not, explain why not. 

 

38.  Are there any limits to the number of star pentagrams that can be drawn within the 

original?  Explain. 

 

VII.  Magical Rectangles 
  

 
 
   Shape A      Shape B 
 

Fig. 2.9  Magical rectangles. 

                                                                                                                                                                                     

print introductions and beautiful, dynamic Internet Java-scripts are widely available.  (E.g. [Ste, Ch. 13], [FrPe], 

[Con], [Cool].) 
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 Consider the similar figures in Fig. 2.9 above.   

 

39.  How are the dimensions of each of the pieces that comprise Shape A related to material 

we have recently been studying? 

 

40.  What do you notice about the dimensions of the pieces that comprise Shape B? 

 

41.  What are the areas of Shapes A and B? 

 

42.  Make a copy of Shapes A and B and cut out the pieces along the darkened lines.  Show 

how you can rearrange the pieces of each figure to form squares. 

 

43.  What are the areas of these square? 

 

44.  Are your answers to problems 41) and 43) compatible?  Is this situation reasonable or 

even acceptable?  Explain. 

 

45.  Can you construct other rectangles where this same behavior might take place?  Explain. 

 

 Shape C below is similar to Shapes A and B above. 

 

 
 

Fig. 2.10  Shape C:  A golden, magical rectangle. 

 

46.  What is the area of Shape C (in terms of the constant )? 

 

47.  Make a copy of Shape C and cut out the pieces.  Show how you can rearrange the pieces 

to form a square. 

 

48.  What is the area of this square?   

 

49.  Are your answers to problems 46) and 48) compatible?  Explain.  (Hint:  Use your result 

from question 2) above to help you simplify if necessary.) 

 

50.  Is the behavior of the shapes constructed from the pieces from Shape C analogous to the 

behavior of the corresponding shapes constructed from the pieces from Shapes A and B?  

Explain whether this is surprising or not. 
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Magical rectangles such as these have long been used as confounding amusements.  

They are effective because they strike a powerful blow at our basic trust of strong 

conservation laws - conservation of area in this case.  While this is an important and generally 

valid law - it comes with exceptions.  In 1924 Stefan Banach (1892-1945) and Alfred Tarski 

(1902-1983) showed that it is theoretically possible to cut an orange into five pieces which 

can be reassembled, with no stretching or distorting, into two oranges of the same size and 

same volume as the original!  This result strikingly demonstrates that area as we know it does 

not, theoretically, satisfy a strict conservation law.  This apparent paradox, which is known as 

the Banach-Tarski Theorem as it is a deductively established result, is one of many 

unbelievable realities we must face when dealing with the infinite.  Several of these are 

explored in the Additional Investigations section. 

 

VIII.  Perspectives on the Golden Ratio 
 

51.  Claims of the ubiquity of the Golden Ratio in art, architecture, and music abound in print 

sources as well as on the Internet.  The validity of some of these instances of mathematical 

folklore is established in documented sources.  For example, Le Corbousier’s use of the 

Golden Ratio in the design of the United Nations Secretariat Building (pictured in Fig. 

2.5) is described in Connections:  The Geometric Bridge Between Art and Science by Jay 

Kappraff, World Scientific Publ. Co., 2001.  However, the majority of these claims falter 

under detailed analysis.  George Markowsky challenges several of the better known 

claims in “Misconceptions about the Golden Ratio” (The College Mathematics Journal, 

vol. 23, no. 1, January, 1992, pp. 2 – 19.)  Find one specific example of a claim that the 

Golden Ratio occurs in a well-known work of art, architecture, music, or other human 

creation.  In a brief essay, describe this occurrence and then turn a more skeptical eye to 

the issue in an effort to determine whether there is real legitimacy to the claim that the 

Golden Ratio plays a real role in the object under study.     

 

52.  In contrast to the debate about the occurrence of the Golden Ratio in the human world, 

the Golden Ratio does occur with surprising frequency in the natural world.  For example, 

the Golden Ratio plays a critical role in the arrangement of leaves on the stems of many 

plants.  (See e.g. the section “Phyllotaxis” in Ch. XII of The Divine Proportion by H.E. 

Huntley, Dover, 1970 or The Power of Limits:  Proportional Harmonies in Nature, Art and 

Architecture by Gyorgi Doczi, Shambhala Publ., 1994.)  The Internet abounds with claims 

of the occurrence of the Golden Ratio in nature; there is even a Golden Mean Gauge!  

(www.goldenmeangauge.co.uk/nature.html .)  Find a significant instance in which the 

Golden Ratio occurs in nature.  Write a brief essay (appropriate to share with fellow 

students) which illustrates this occurrence of the Golden Ratio.  You should include 

appropriate diagrams, some explanation of what natural function gives rise to the Golden 

Ratio, and reliable references. 

 

http://www.goldenmeangauge.co.uk/nature.html
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IX.  Galleries of Mathematics and Art; Mathematics and Nature 
 

 Hopefully the past two topics have given you the opportunity to see mathematics 

playing a central role in art and in nature.  Enough connections between mathematics and both 

the arts and nature exist to fill up a whole college career, certainly more than can be hinted at 

in a single text.  But part of the premise of this text is that you are the explorer.  One way for 

your group of explorers (i.e. class) to learn more of the surprising and beautiful connections to 

the arts and nature is to create a gallery of posters - one done by each explorer.   

 Each explorer has the opportunity to choose a topic of particular interest:  the spiral 

structure of DNA, M.C. Escher's hyperbolic tessellations, spirals in nature, the crystalline 

structure of snowflakes, the geometry of cubism, the mathematical mechanisms that 

determine animal coat patterns, origami, symmetry in quilting, the advent of perspective 

drawing, the mathematics of computer generated animation, mathematical structures in 

poetry, kaleidoscopes, the placement of guitar frets, fractals in musical compositions, the 

fourth dimension in modern art, or any other of thousands of topics that one can find quickly 

in print and Internet literature searches.  Together, all of you get to see these varied 

connections of mathematics to the arts and nature. 

 For those of you who have not ever seen a poster session, they are widely used to 

publicize, announce, and/or present the results of research investigations.  They are used in 

professional conferences (including virtually all conferences for mathematicians and 

scientists), college and university courses, and meetings of all kinds.  They are useful because 

many posters can be displayed without the time and space limitations that traditional 

presentations impose.  Additionally, it makes it easier for participants to browse and find 

research of interest. 

 At our college we have created galleries of posters.  The posters are hung in 

Department of Mathematics hallways and classrooms for all to see - including students and 

faculty from other classes who are equally excited to see the many connections.  Each poster 

hangs for a week or more until it is replaced by another student's poster.  Over the course of 

the semester each student's poster has an opportunity to enlighten all those who pass by it.  A 

sign-up sheet insures that all students choose different topics.  Over the course of the semester 

this means a general group of explorers (class) can create a gallery of 30 more connections of 

mathematics to the arts and to nature! 

 To keep everybody involved, each poster is self-reviewed, peer reviewed, and 

reviewed by the teacher.  They are evaluated in five categories, which your group may decide 

to adjust however you see fit.  Our categories are: 

 An interesting, accessible topic. 

 An engaging description and/or illustration of the topic. 

 Success in using the topic to aid in our efforts to illustrate the importance of mathematics in the 

arts or mathematics in nature. 

 An appropriate collection of additional information interested readers can use to pursue the topic 

in greater depth.  These may include:  book, journal, audio, video, and other media and multi-

media citations; Internet resources; museum holdings; maps of nature trails; event dates; etc. 
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 The physical construction of a high quality poster, including:  appropriate design, pleasing visual 

layout, effectiveness, appropriate mix of media and information, effort, etc. 

 We have found this to be a wonderful way to share the surprise, beauty, and 

excitement of mathematics.  We invite your group of explorers to try it as well.  
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TOPIC 3 

 

Primes and Congruences 
 

The positive integers stand there, a continual and inevitable challenge to the 

curiosity of every healthy mind. 

      --  G.H. Hardy 

 

It will be another million years, at least, before we understand the primes.   

      --  Paul Erdos 

 

Were it not for your [Duke of Brunswick] unceasing benefits in support of my 

studies, I would not have been able to devote myself totally to my passionate love, 

the study of mathematics. 

      --  C.F. Gauss 

 

Primes 
 

You’ll remember that in the introduction you were reminded of the prime numbers, 

those positive integers whose only divisors are 1 and the number itself.  Any positive integer 

that is not prime is called composite.  Any number that evenly divides another positive 

integer is called a factor of the latter. 
   

For example, the number 462 is certainly 

composite since it is even.  In fact, we can 

completely factor 462 as .11732462   2, 

3, 7, and 11 are all factors of 462, as are 

combinations of these numbers like 6, 14, and 

77.  This factorization of 462 is called complete 

because none of the factors can be broken down 

any further – they are all prime.  Naturally, if we 

start with any composite number, we should be 

able to factor it, then factor the factors, and then 

factor these smaller factors, and continue in this 

way until all of the remaining factors are primes.     

The numbers 5 and 7 are called twin 

primes because they come in pairs, as 

close as two odd primes can be.  11 and 

13, 17 and 19, and 29 and 31 are other 

twin prime pairs.  While mathematicians 

have long known there are infinitely 

many primes (see Section 9 of 

Additional Investigations), they have no 

idea whether there are infinitely many 

twin prime pairs or not.  In fact, this is a 

major open question in number theory – 

solve it and you are a mathematical 

celebrity. 

In fact, not only can every positive integer be written as a product of one or more 

primes, but this representation is unique up to the order of its factors.  This result is called the 

Fundamental Theorem of Arithmetic, and it is truly of fundamental importance.  For what 

it says is that the prime numbers are, via multiplication, the building blocks of the positive 

integers.  As the periodic table of elements serves as the building block for all chemical 

compounds, the primes serve as the basis for the positive integers.  

Mathematicians have long tried to find precise patterns among the primes, and despite 

some success and fascinating stories like that of “The Twins” (see Investigation Section I 
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below), they have had little success.  Because large primes are the combinations that unlock 

encryption schemes, they are an invaluable commodity.  Thus, the search for patterns among 

the primes continues. 

 

Mersenne Primes 
 

The French monk Father Marin 

Mersenne (1588-1648) was a great facilitator 

of mathematical communication.  He helped 

mathematics successfully escape from the 

Dark Ages that had stagnated intellectual life.   

In the search for primes, Mersenne 

suggested that we consider numbers of the 

form 

,12n

nM  

numbers which have since been called 

Mersenne numbers in his honor.  Notice that 

the Mersenne numbers  

,3122

2M  

,7123

3M  

,31125

5M and 

,127127

7M  

are all prime numbers.  One might be tempted 

to think that the Mersenne numbers are prime 

whenever the exponent n is.  But this is 

something that will require more 

investigation.  (See Investigation Section II 

below.)   

 

 

 

In their hunt for larger and larger 

primes, mathematicians have developed 

tests that computers can painstakingly 

apply in an attempt to determine 

whether specific Mersenne numbers are 

prime.   

On December 5, 2001, the Great 

Internet Mersenne Prime Search 

(GIMPS) volunteers announced that 

Michael Cameron, a 20 year-old 

running the software Prime95 on his 

PC, had shown that the Mersenne 

number 12 917,466,13   was indeed prime.  

This prime number, the largest known 

to date, has 4,053,946 digits when 

written out in its integer form. 

If you would like to be part of this 

search, and maybe become famous, you 

can download software at 

www.mersenne.org /prime.htm .  This 

software runs in background in the 

lowest priority on your computer, using 

your computer's capabilities when you 

are not actively using them. 

 

Fermat Numbers 
 

In a letter to Mersenne, Pierre de Fermat (1601-1665), whose monumental 

contributions to number theory are explored in this and the next topic, announced he had 

“found that numbers of the form 122n

are always prime numbers and have long since 
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signified to the analysts the truth of this theorem.”  In honor of Fermat, we call 122n

the n
th

 

Fermat number and denote it by .122n

nF   As Fermat noted,  

,312
02

0F  

,512
12

1F  

,1712
22

2F  

,25712
32

3F  and 

537,6512
42

4F  

are prime.  But what about the next two, the whopping 297,967,294,412
52

5F  and 

51,617,073,709,518,446,74412
62

6F ?  Are they really prime?   

 Clearly it will be quite difficult to work with numbers this large.  And there are 

numbers fabulously larger than this – numbers so large that it will never be physically 

possible for us to consider them directly, with electronic computers or otherwise – that are 

important to consider in number theory.  Perhaps surprisingly, we can learn a great deal about 

such numbers indirectly. 

 

Congruences:  aka Clock Arithmetic 
 

 Fermat, then Euler, Joseph-Louis Lagrange (1736-1813), and Adrien-Marie 

Legendre (1752-1833), found clever methods to work with gigantic numbers of the sort 

considered above indirectly.  This enabled them to make the most significant advances in 

number theory during the sixteen and seventeenth centuries.  But it was the brilliant Gauss 

who unified their methods and results.  His masterpiece, Disquisitiones Arithmeticae, was 

written at the age of twenty and yet it "not only began the modern theory of numbers but 

determined the directions of work in the subject up to the present time."
23

 

 In this work Gauss introduces the theory of congruences which you might already 

know as clock or modular arithmetic.  Simply enough, 7 hours after 11 o'clock will be 6 

o'clock.  We write this as 

12mod6117  

which we read as "7 plus 11 is congruent to 6 mod 12."  In the military one uses 24-hour 

clocks so we would have 

.24mod18117  

However, 7 hours after 23 hundred hours (i.e. 11 o'clock p.m.) is 6 hundred hours: 

.24mod6237  

                                                           
23

 Morris Kline, from Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972, p. 

813. 
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 Gauss noticed that we can define congruences like this for any "clock".  We say that 

24mod6237  because 7 + 23 = 30 and the remainder when 30 is divided by 24 is 6.  So 

we will say "a is congruent to r mod m" and write mra mod  whenever a leaves remainder 

r when divided by m.  The remainder r is called the residue and the base m of the "clock" is 

called the moduli.  In his Disquisitiones, Gauss showed that congruences form perfectly nice 

arithmetical systems where one can not only add numbers, but subtract and multiply numbers, 

as well.   

 Notice that there is a slight inconsistency with the mathematical definition and the 

description via clocks.  Namely, using a clock we would say 12mod1275  since 5 hours 

after 7 o’clock is 12 o’clock.  Indeed, the numbers on a standard clock are 1 -12.  In contrast, 

when we consider this congruence via remainders we have 12mod075  since the 

remainder when 5 + 7 is divided by 12 is 0.  For mathematicians mod 12 arithmetic uses the 

numbers 0 - 11 instead of 1 -12 which 0 taking the place of 12.  While the mathematicians 

approach is more appropriate for a deep study of modular arithmetic, for our purposes here 

either convention will be appropriate.  

    

Application of Congruences 
 

 In one of his remarkable insights, Euler "noticed" that the Mersenne number 

4083,397,649,556,917,039,671,406,1283

83M  was not prime but rather had 167 as a 

factor.  "Noticing" this is remarkable itself, it seems a unpleasant task to even check that 167 

divides this gigantic number.  Let's see how we can use congruences to do this.
24

 

 If 167 is a factor of 2
83

 - 1, then this means 167 divides 2
83

 - 1 evenly.  Another way to 

say this is there is no remainder, which means .167mod01283
  So how can we compute 

powers of 2 mod167?  Well, 

25628  so 167mod89167mod25628
. 

Since ,22 1628 we have 

.167mod72167mod7921167mod892 216
 

Similarly,  

,167mod7167mod5184167mod722 232
and 

.167mod49167mod72 264
 

So then 

167mod2167mod2167mod2167mod2222 316643166483
 

167mod1167mod28224167mod87249  

                                                           
24

 Adapted from The History of Mathematics by David M. Burton. 



 47 

since 167  169 = 28223.  So .167mod0167mod111283   This is a very powerful 

method indeed.  In fact, without methods like these, the computations that are necessary to 

encrypt messages, with algorithms like the RSA algorithm, would not be feasible. 

 

Investigations 
 

I.  The Twins 
 

 A moving story of arithmetical insight is told by the noted psychologist Oliver Sacks 

in the chapter "The Twins" from The Man Who Mistook His Wife for a Hat (HarperPerrenial, 

1990, pp. 195 - 213.)  This story, which was loosely adapted as the main story line to the 

movie "Rain Man" and is also part of the movie "Awakenings", involves two autistic twins 

who spoke in prime numbers and recognized numbers and number relationships in everything.  

For example: 

A box of matches on their table fell, and discharged its contents on the floor: "111," 

they both cried simultaneously; and then, in a murmur, John said "37".  Michael 

repeated this, John said it a third time and stopped.  I counted the matches -- it took 

some time -- and there were 111. 

 

1.  What does 37 have to do with 111? 

 

2.  Why did the twins repeat 37 as they did? 

 

3.  What is the mathematical importance of 37 to 111? 

 

 The pattern of the prime numbers is one of mathematics’ most closely held secrets, 

long sought with almost no progress.  Said Euler,  
 

Mathematicians have tried in vain to this day to discover some order in the sequence 

of prime numbers, and we have reason to believe that it is a mystery into which the 

human mind will never penetrate. 
 

Yet, it is possible that the secret of the primes was known to these twins, but has been lost 

through efforts made to prevent their "unhealthy communication together... in an appropriate, 

socially acceptable way," an effort that completely squashed their numerical powers. 

 

II.  Mersenne Numbers 
 

4.  Which of the Mersenne numbers M2, M3, M4, M5, and M6 are prime?  Explain. 

 

5.  Show that the seventh Mersenne number M7 is prime. 

 

6.  Is the eighth Mersenne number M8 prime?  Explain. 

 

7.  Is the ninth Mersenne number M9 prime?  Explain.   
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8.  Based on investigations 4) - 7) make a conjecture which gives conditions on the number n 

which allows you to predict whether the Mersenne number Mn is prime or not. 

 

9.  Use your conjecture in 8) to make a conjecture about the primality of the Mersenne 

number 12n

nM  when the exponent n is even and greater than 2. 

 

10.  Notice that ,15351212 22  ,63791212 33  and, 

.25515171212 44   Use this pattern to give a deductive proof of the 

conjecture in 9). 

 

11.  The thirteenth, seventeenth, and nineteenth Mersenne numbers ( ,81911213

13M  

,071,1311217

17M  and ,287,5241219

19M respectively) are all prime numbers.  

Do these facts and your proof in 10) bolster your faith in the validity of your conjecture on 

8)? 

 

12.  Is the eleventh Mersenne number, ,20471211

11M  prime?  What does this tell you 

about your conjecture in 8)? 

 

 Mersenne made a detailed study of Mersenne numbers.  He claimed to know exactly 

which of the first 257 Mersenne numbers were prime and which were not.  It was not until 

1947 that, with the help of the first desk calculators, the primality of all the numbers on this 

list were determined.  Mersenne made only five mistakes out of these 257 numbers – a 

remarkable accomplishment since these numbers grow so fast, as we have already seen. 

 One of Mersenne’s mistakes was with M67.  Mersenne claimed this number was prime.  

However, 

Edouard Lucas worked a test whereby he was able to prove that the 

Mersenne number M67 was composite; but he could not produce the actual 

factors.  At the October 1903 meeting of the American Mathematical 

Society, the American mathematician Frank Nelson Cole had a paper on the 

program with the somewhat unassuming title “On the Factorization of Large 

Numbers.”  When called upon to speak, Cole walked to a [chalk] board and, 

saying nothing, proceeded to raise the integer 2 to the 67
th
 power; then he 

carefully subtracted 1 from the resulting number and let the figure stand.  

Without a word he moved to a clean part of the board and multiplied, 

longhand, the product 

193,707,721 × 761,838,257,287. 

The two calculations agreed.  The story goes that, for the first and only time 

on record, this venerable body rose to give the presenter of a paper a standing 

ovation.  Cole took his seat without having uttered a word, and no one 

bothered to ask him a question.  (Later, he confided to a friend that it took 

him 20 years of Sunday afternoons to find the factors of M67.)  [Bur; p. 206] 
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13.  How many digits does M67 have? 

 

14.  How long do you think it might take you to calculate M67 by hand? 

 

15.  Do you think that Cole’s time in determining a factorization of M67 was well spent?  

Explain. 

 

 Cameron's record Mersenne prime, M13,466,917, described in the text box above, 

contains 4,053,946 digits when written out in its integer form.  The last digits of this number 

are: 

...7729337577307522971483858142577664401546209333491130073855470256259071 

 

16.  If this page were filled with digits in this way, 35 lines to a page, how many digits could 

fit on this page? 

 

17.  How many pages would it take to write out the digits to Cameron's Mersenne prime in the 

way just described?  Explain. 

 

18.  Does this help you appreciate how large this prime is and how remarkable it is that we 

know deductively that this number is prime?  Explain. 

 

III.  Fermat Numbers 
 

19.  To determine whether the fifth Fermat number, ,297,967,294,412
52

5F is prime, 

theoretically what must one do? 

 

20.  In light of Fermat’s virtually unblemished record, would it seem wise to challenge the 

primality of the fifth Fermat number in an era when computers and electronic calculators 

were not available? 

 

As discussed later in Topic 4, Euler was the first to fruitfully extend any of Fermat’s 

significant work in number theory.  That is the case here as well.   

Instead of using brute force to try to find factors of F5, Euler eliminated the majority of 

potential factors by analyzing properties potentially successful divisors would be required to 

have.  He showed that if F5 was not prime it must have a prime factor of the form 64k + 1, 

where k is a positive integer. 

 

21.  Compute the numbers 64k + 1 for k = 1, 2, …, 10. 

 

22.  Which of the ten numbers in your answer to 21) are prime? 

 

23.  Check to see if any of the primes from your answer to 22) divide F5.  What does this tell 

you about F5? 
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24.  Would you be surprised to learn that mathematicians have shown that the next sixteen 

Fermat numbers, ,12,...,12
326 2

32

2

6 FF  are all composite?  They are.  How badly 

mistaken was Fermat in his conjecture about Fermat primes?   

 

IV.  (Modular) Arithmetic  
 

25.  Reduce each of the congruences below to a number smaller than the moduli, 3: 

?3mod12  

?3mod22  

?3mod32  

?3mod42  

?3mod52  

?3mod62  

?3mod72  

 

26.  Do you see a pattern in your answers to 25)?  If so, do you think it will continue 

indefinitely?  Explain why. 

 

27.  Reduce each of the congruences below to a number smaller than the moduli, 4: 

?4mod13  

?4mod23  

?4mod33  

?4mod43
 

?4mod53
 

?4mod63
 

?4mod73
 

?4mod83
 

?4mod93
 

 

28.  Do you see a pattern in your answers to 27)?  If so, do you think it will continue 

indefinitely?  Explain why. 

 

29.  Reduce each of the congruences below to a number smaller than the moduli, 5: 

?5mod14
 

?5mod24
 

?5mod34
 

?5mod44
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30.  Do you see a pattern in your answers to 29)?  If so, do you think it will continue 

indefinitely?  Explain why. 

 

31.  Reduce each of the congruences below to a number smaller than the moduli, 7: 

?7mod16  

?7mod26  

?7mod36  

?7mod46  

?7mod56
 

?7mod66  

 

32.  Do you see a pattern in your answers to 31)?  If so, do you think it will continue 

indefinitely?  Explain why. 

 

33.  Reduce each of the congruences below to a number smaller than the moduli, 31: 

?31mod130  

?31mod230  

?31mod330  

?31mod430  

 

34.  Do you see a pattern in your answers to 33)?  If so, do you think it will continue 

indefinitely?  Explain why. 

 

35.  You should see a pattern to the groups of questions above.  See if you can make a 

conjecture about the identity of congruences of the form 

,mod1 na n
 

under certain conditions on the numbers a and n.   

 

V.  Real Mathematical Magic 
 

 A topic in first algebra courses and forwarded email messages proclaiming 

mathematical "miracles" are algebra magic tricks.  Pick a number.  Add three to your number.  

Multiply by four.  Now subtract twelve.  Divide by four.  Presto!!  It's your original number.  

(See e.g. [Jac, pp. 40-43] for this and other number tricks.) 

 Much more miraculous is the following trick based on the Chinese Remainder 

Theorem, a result from modular arithmetic known to the ancient Chinese. 

 

36.  Think of any number between 1 and 105.  Call your mystery number x. 

 

37.  What is your number x, from 36), congruent to mod 3?  Label your answer as c1, so we 

have x  c1 mod 3. 
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38.  What is your number x, from 36), congruent to mod 5?  Label your answer as c2, so we 

have x  c2 mod 5. 

 

39.  What is your number x, from 36), congruent to mod 7?  Label your answer as c3, so we 

have x  c3 mod 7. 

 

40.  What do the numbers 3, 5, and 7 have to do with 105? 

 

41.  Evaluate the expression 115121235 321 cccm . 

 

42.  Reduce m mod 105.  Surprised? 

 

43.  Do you think that this trick will work for any number between 1 and 105?  Explain. 

 

44.  Now think of any number between 1 and 231.  Call your mystery number x. 

 

45.  What is your number x, from 44), congruent to mod 3?  Label your answer as c1, so we 

have x  c1 mod 3. 

 

46.  What is your number x, from 44), congruent to mod 7?  Label your answer as c2, so we 

have x  c2 mod 7. 

 

47.  What is your number x, from 44), congruent to mod 11?  Label your answer as c3, so we 

have x  c3 mod 11. 

 

48.  Evaluate the expression 1021333277 321 cccm . 

 

49.  In the expression for m, in 48), what do you think gave rise to the numbers 77, 33, and 

21?  Explain.
25

 

 

50.  Reduce m mod 231.  Surprised? 

 

 These tricks are direct applications of the Chinese Remainder Theorem, a much more 

general result from number theory that is critical in solving systems of congruences. 

 

                                                           
25

 The numbers 2, 3, and 10 in this expression are a bit more mysterious.  They were chosen so that  

77 2 1(mod 3), 33 3 1(mod 7), etc.  With this in mind, one can now generalize this trick to include any 

number of moduli.  In other words, you could have the dupe choose any number between 1 and 

255,255=3 5 7 11 13 17 and then ask for the six necessary moduli. 
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 TOPIC 4 
 

Partitions 
 

Read Euler, he is our master in all. 

--  P.S. Laplace 

 

"What's one and one and one and one and one and one and one and one and one 

and one?"  

"I don't know," said Alice. "I lost count."  

"She can't do addition," said the Red Queen.  

-- Lewis Carroll 

 

The trouble with the integers is that we have examined only the very small ones.  

Maybe all the exciting stuff happens at really big numbers, ones we can’t even begin 

to think about in any very definite way.  Our brains have evolved to get us out of the 

rain, find where the berries are, and keep us from getting killed.  Our brains did not 

evolve to help us grasp really large numbers or to look at things in a hundred 

thousand dimensions. 

--  Ronald L. Graham 

 

The Births of Modern Number Theory 
 

 Throughout this text the work of a great many mathematicians in number theory is 

mentioned.  In every field of mathematics each new generation adds a new story to our 

understanding of mathematics, and each new generation has many players.  Yet in number 

theory this large cast of players may be a bit misleading for the formative history of number 

theory is based overwhelmingly on the work of just three mathematicians:  Pierre de Fermat, 

Leonhard Euler, and Carl Friedrich Gauss. 

 As Andre Weil (1906-1998), one of the twentieth century’s foremost number 

theorists, notes in his definitive work on the history of number theory: 

One might … try to record the date of birth of the modern theory of numbers; like the 

god Bacchus, however, it seems to have been twice-born.  Its first birth must have 

occurred at some point between 1621 and 1636, probably closer to the later date … 

when Fermat acquired a copy of this book [a translation of the Greek Diophantus’ 

Arithmetica]…  As to its rebirth, we can pinpoint it quite accurately.  On the first of 

December 1729, Goldbach asked Euler for his views about Fermat’s statement that 

all integers 122n

 are primes…  After that day, Euler never lost sight of this topic 

and of number theory in general…  Number theory reached full maturity [with 

Gauss].
26

 

                                                           
26

 Number Theory:  An Approach through History from Hammurapi to Legendre, Birkhauser Boston, 1984. 
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We have either already seen, or will soon see, the mathematics that initiated these key 

moments in the history of number theory.   

 

The Development of Mathematics Illustrated by Number Theory 
 

The births of number theory at the hands of Fermat, then Euler, and its later passage 

into adulthood through the work of Gauss provide a wonderful illustration that typifies 

mathematical growth and development. 

However, mathematics is generally presented in schools in its final, polished form.  

The given topic is hundreds of years old, and generations of mathematicians and teachers 

have organized and reorganized it into a highly logical, streamlined form.  It is certain, if not 

lifeless.  The validity of its results were established via proofs long ago, as were its 

connections to other areas of mathematics.  It is rare that students are provided the 

opportunity to explore the examples, problems, and issues from which an area of mathematics 

germinates. 

But mathematics almost always begins with examples, problems, and compelling 

issues.  A great deal of work is done before the patterns, insights, and conjectures of one 

generation are slowly replaced by the deductive proofs of another.  And it is generally another 

generation hence that assembles all of this work into a coherent whole. 

In number theory, it was Fermat that found the patterns, had the insights, and made the 

conjectures that would fuel number theory for many, many generations.  He provided few if 

any proofs, writing his ideas in the margins of Diophantus’ Arithmetica.  It was Euler, a 

century later, that provided proofs and generalizations of many of Fermat’s most important 

observations.  And, a generation later, it was Gauss that brought the work of Euler together 

into a coherent whole.   

We spoke of Gauss in the previous topic and will return to him in the next, 

investigating some of the mathematics that made his Disquisitiones Arithmeticae such a 

landmark achievement.  Here we will concentrate on a few of the many remarkable 

connections between Euler and Fermat.   

 

Connections Between Fermat and Euler 
 

Fermat Primes 

We investigated Fermat primes, prime numbers of the form ,122n

 in Topic 3.  

Following the work of Euler, you showed that the Fermat primes were not, in fact, all primes.  

Indeed, we now know that of the first twenty-one Fermat numbers only the first four are 

primes.  Given Fermat’s renown, nobody seriously questioned his claim, and it was not until 

the arrival of Euler that we find someone with significant enough mathematical prowess to 

disprove Fermat.   
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 Euler’s proof that the "Fermat prime" 12
52  is not prime, which you recreated in 

investigations 19) – 23) in Topic 3, is one of the great mathematical discoveries.
27

   

 

The (Mathematical) Key to Modern Encryption 

 In “(Modular) Arithmetic,” Section IV of the Investigations for Topic 3, you studied 

congruences of the form .mod1 na n   The desired result in investigation 35) in that section is 

that  

na n mod11  

whenever n is prime and a is not a multiple of n.  This result is known as Fermat’s Little 

Theorem, to distinguish it from his famous “Last Theorem.”  While this result was known to 

ancient mathematicians (e.g. the 5
th

 century B.C. Chinese; see [Flan, pp. 134-7]), it was 

rediscovered and reintroduced into mathematics by Fermat in a letter to Bernard Frenicle de 

Bessy (1605-1675) on 18 October, 1640.  Fermat was characteristically glib in providing 

justification.  He told Frenicle, “I would send you the demonstration, if I did not fear its being 

too long.”  ([Bur, pp. 88-9])   

It was left up Euler to supply the first proof of Fermat’s Little Theorem, almost 100 

years later, in 1736.  But Euler did Fermat one better this time.  Not only did he prove 

Fermat’s Little Theorem, he showed that it could be generalized.  That is, Fermat’s Little 

Theorem is a special case of a much more general pattern.  Euler’s Theorem states: 

na n mod1)(  

whenever a and n have no common factors.    here is the Euler phi-function which will have 

the value n – 1 whenever n is prime, thereby yielding Fermat’s Little Theorem in that case.
28

 

Fermat’s Little Theorem, and its generalization to Euler’s Theorem, are of no little 

significance.  These results are the fundamental mathematical results on which all modern 

encryption schemes are based!   

 

Primes and Squares 

 After the even prime number 2, all primes are odd.  If you check, you will easily see 

that any odd number can written in the form 2k + 1, where k is a whole number.  We don’t 

learn much about primes writing the odd primes in this way.  However, any odd number can 

also be written either as 4k + 1 or 4k – 1, where k is a whole number.  Fermat discovered that 

the 4k + 1 primes behave quite differently than the 4k – 1 primes. 

                                                           
27

 In Journey Through Genius:  The Great Theorems of Mathematics, [Dun1], Euler scholar William Dunham 

(1947- ) gives an accessible treatment of Euler’s discovery – one which he includes as one of his descriptions of 

mathematics’ thirteen great theorems.  
28

 In Topic 2 we used the Greek letter phi to denote the Golden Ratio.  This same letter is being used here with a 

totally different meaning and it will always be clear from context which is being denoted for the Golden Ratio is 

a constant while phi is denoting a function here. 
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Here, via example, is what Fermat discovered (on Christmas day in 1640
29

) and Euler 

first proved.  The number 29 is a prime, a 4k + 1 prime since it can be written 29 = 4 × 7 + 1.  

But 29 can also be expressed as 29 = 2
2
 + 5

2
.  What about the next 4k + 1 prime,  37?  Well, 

37 = 4 × 9 + 1 and 37 = 1
2
 + 6

2
.  And the next?  41 = 4 × 10 + 1 and 41 = 4

2
 + 5

2
.  Try a few 

yourself.  What you will find is that every 4k + 1 prime can be written as the sum of two 

squares.  And it can only be written as the sum of two squares in one way.  And what about 

the 4k - 1 primes, you ask?  Try a few:  3, 7, 11,…  You will find that none of the 4k - 1 

primes can ever be written as the sum of two squares.          

 

Sums of Squares 

 Fermat and Euler were interested in what they could learn about expressing any 

number as a sum of squares.  As the 4k - 1 primes show, more than two squares will 

sometimes have to be used.  In Section IV of the Investigations for Topic 5, you will (re-

)discover that any number can be expressed as the sum of not-many-more than two squares.  

Fermat claimed to have a proof of this result, but a proof of his was never found.  (Surprised?)  

Euler set to work on this problem as early as 1730.  He worked on it for 40 years with partial 

success, proving many partial results, before Lagrange used many of Euler’s results to give a 

complete proof.  Compelled to find his own proof, three years later, after working on the 

problem for 43 years, Euler found a simpler, original proof.  [Dud, pp. 149-50] 

You might ask, “What is so special about squares?  Why not use other powers?”  

Indeed, known as Waring’s Problem, this is a natural question that is one of the foci of Topic 

5 and Topic 6. 

 

Fermat’s Last Theorem 

 Fermat’s Last Theorem is one of the two main foci of Topic 6.  As mentioned in the 

introduction, the theorem is the most famous and long-standing problem in all of 

mathematics.  It concerns integer solutions to the equation a
n
 + b

n
 = c

n
 for each of the 

exponents n = 2, 3, 4, 5, …  The first documented progress was due to Fermat, who proved 

that there were no solutions to the equation when the exponent is n = 4.  The next documented 

progress was due to Euler who proved that there were no solutions to the equation when the 

exponent is n = 3.  These two results drove mathematicians’ quests for this holy grail for more 

than three centuries. 

 

Partitions 
 

Primality and factorization both arise in the context of multiplication.  Of course, since 

the integers also have addition as an operation,
30

 it is natural to wonder whether we can find 

                                                           
29

 [Bur, p. 242]. 
30

 Sets that have one operation which satisfies special properties are called groups, a critically important class of 

mathematical objects.  More special are those sets, like the integers, which have two operations, such as addition 

and multiplication, which satisfy special properties and are called rings.  One learns about such objects when one 

studies modern abstract algebra (not to be confused with high school or college algebra, although these fields 
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any patterns in the way integers can be represented as sums of other integers.  The section 

above on sums of squares is one example.    

An even simpler possibility is simply to write positive integers as sums of other 

positive integers.  For example, we can write: 

2 = 2 and 2 = 1 + 1. 

In writing 2 this way, unlike writing it with multiplication and primes, where there is only one 

way to write it, there is no uniqueness.  But can we find a pattern to this non-uniqueness? 

Decompositions of a positive integer into sums of positive integers are now known as 

partitions.  Clearly, the partitions of two given above are the only ones, and 1 only has one 

partition, 1 = 1.  Note that the partitions 2 + 1 and 1 + 2 of 3 are considered identical; order 

does not matter. 

The first detailed study of partitions was taken up by Euler in response to queries from 

the mathematician Philippe Naude’ (1684-1745).  Euler had great success.  While many of 

Euler’s results relied on infinite series, and would take us too far afield, the investigations in 

this and the next topic will use partitions as a vehicle to explore rich, accessible, and 

important contemporary mathematical questions.  

 

Investigations 

 

I.  Enumerating Partitions 
 

1.  Find all of the partitions of 3. 

 

2.  Use your answer to 1) to complete the following table: 

Integer; n # Partitions; p(n) 

 1   1 

 2   2 

 3  

 

3.  Based on the table in 2), how many partitions of 4 should there be? 

 

4.  What kind of reasoning are you using in your answer to 3)? 

 

5.  Find all the partitions of 4. 

 

6.  Does your result in 5) agree with your conjecture in 3)?  What does this tell you about the 

reasoning that you used to make your conjecture? 

                                                                                                                                                                                     

are related) in which Erveste Galois (1811-1832), a famous mathematical prodigy who was killed in a dual at 

the age of 20, and Niels Henrik Abel (1802-1829), another prodigy who died from tuberculosis at age 27, were 

critical founding figures. 
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7.  Use your answer to 5) to complete the following table: 

 

Integer; n # Partitions; p(n) 

 1   1 

 2   2 

 3  

 4 

  

8.  Find a pattern in the table in 7), and use this table to predict how many partitions of 5 there 

should be.  What kind of reasoning are you using to make this prediction? 

 

9.  Find all the partitions of 5. 

 

10.  Does your result in 9) agree with your conjecture in 8)?  What does this tell you about the 

reasoning that you used to make your conjecture? 

 

11.  Use your answer to 9) to complete the following table: 

 

Integer; n # Partitions; p(n) 

 1   1 

 2   2 

 3  

 4 

 5 

 

12.  Find a pattern in the table in 11), and use this table to predict how many partitions of 6 

there should be.    What kind of reasoning are you using to make this prediction? 

 

II.  Counting Strategies 
 

 As the number we are investigating becomes larger and larger, the number of 

partitions increases quickly.  To successfully find all the partitions, it is important to have a 

strategy to insure that none are missed. 

 

13.  Find, clearly describe, and then apply a strategy for finding the number of partitions of 6.   

 (Hint:  Your strategy can be organizational or mathematical.  One mathematical approach 

uses partitions of a previous number to help build partitions of the next number.) 

 

14. Does your result in 13) agree with your conjecture in 12)?  What does this tell you about 

the reasoning that you used to make your conjecture? 
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15.  Use your answer in 13) to complete the following table: 

 

Integer; n # Partitions; p(n) 

 1   1 

 2   2 

 3  

 4 

 5 

 6 

 

16.  Find a pattern in the table in 15), and use this table to predict how many partitions of 7 

there should be.    What kind of reasoning are you using to make this prediction? 

 

17.  Find all of the partitions of 7. 

 

18. Does your result in 17) agree with your conjecture in 16)?  What does this tell you about 

the reasoning that you used to make your conjecture? 

 

19.  Use your answer to 17) to complete the following table: 

 

Integer; n # Partitions; p(n) 

 1   1 

 2   2 

 3  

 4 

 5 

 6 

 7 

 

20. Find a pattern in the table in 19), and use this table to predict how many partitions of 8 

there should be. What kind of reasoning are you using to make this prediction? 

 (Hint:  Consider the differences between successive rows in the table.  These differences 

are called the first differences and are a discrete analogy of the first derivative which is a 

central topic in calculus.)   

 

21.  Find all the partitions of 8.   

 

22.  Does your result in 21) agree with your conjecture in 20)?  What does this tell you about 

the reasoning that you used to make your conjecture? 

 

III.  Patterns in the Partition Function 
 

 A list of the number of partitions of the first forty-five integers, excluding those you 

have found above, appears below.  You should notice that none of your "patterns" really 

continue.  Indeed, there is no "simple" pattern.  It was not until 1934 that an explicit formula 



 60 

describing this pattern was found -- two centuries after partitions were first significantly 

considered.
31

 

 Fill in the missing partitions, being sure to check your results with others in your class. 

 

                                                           
31

 This discovery was made by Hans Rademacher (1892-1969).  This formula is remarkably complex, 

providing, as a consequence, the "simple asymptotic" result that as the integer in question, denoted by the 

variable n, gets closer and closer to infinity the number of partitions of n gets closer and closer to
34

3

2

n

e

n

, a 

result which had been established by Hardy and Ramanujan in 1918.  Given the availability of efficient computer 

algebra systems, it is somewhat easier to generate the number of partitions via the generating function 

1 1

1

n
nx

, which is an infinite product (!!) discovered by Euler.  See Additional Investigations for more 

details. 

Integer; n # Parts; p(n) 

 1 1 

 2 2 

 3  

 4  

 5  

 6  

 7  

 8  

 9 30 

 10 42 

 11 56 

 12 77 

 13 101 

 14 135 

 15 176 

       
 16 231 

 17 297 

 18 385 

 19 490 

 20 627 

 21 792 

 22 1,002 

 23 1,255 

 24 1,575 

 25 1,958 

 26 2,436 

 27 3,010 

 28 3,718 

 29 4,565 

 30 5,604 

      
 31 6,842 

 32 8,349 

 33 10,143 

 34 12,310 

 35 14,883 

 36 17,977 

 37 21,637 

 38 26,015 

 39 31,185 

 40 37,338 

 41 44,583 

 42 53,174 

 43 63,261 

 44 75,175 

 45 89,134 

 

 

23.  Using the table above, find all integers whose number of partitions is a multiple of 5.  

 

 

24.  If you delete some of the numbers from your answer to 23), the remaining numbers fall in 

a regular pattern, called a partition congruence mod 5.  Describe this pattern precisely. 

 

25.  Do you think that the pattern in 24) continues forever?  Explain. 

 

26.  Following the example of 23) and 24), find and precisely describe a partition congruence 

mod 7. 
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27.  Following the example of 23), 24), and 26), find and precisely describe a partition 

congruence mod 11. 

 

Ramanujan believed that the only partition congruences were those found above or 

those formed by products of 5, 7, and 11; for example, 11751925 2 partition 

congruences.  In the decades following his death, mathematicians found a few more partition 

congruences, but believed that they were isolated, explicable examples.  Said mathematician 

George E. Andrews, one of the foremost international experts on questions in this area of 

number theory, "It was really believed that there would probably never be any new major 

discoveries regarding partition congruences."
32

 

 

IV. Amazing New Discoveries 
 

 While working through awkward, non-traditional passages in Ramanujan's notebooks 

in 1999-2000, the mathematician Ken Ono made a remarkable discovery - there are partition 

congruences for every prime number greater than 3!  In other words, in addition to 5, 7, and 

11 partition congruences, there are 13, 17, 19, 23,... partition congruences as well!  Moreover, 

he proved this result while only explicitly finding one new partition congruence. 

 

28.  In his research Ken Ono only found one new partition congruence.  Yet he was still able 

to prove deductively that there are infinitely many partition congruences.  How do you 

think somebody can prove, deductively, that something exists, or even infinitely many of 

them exist, without discovering a procedure that explicitly identifies them? 

 

 Subsequently, a Penn State undergraduate student, Rhiannon L. Weaver, found an 

algorithm, or procedure, for generating new, previously undiscovered partition congruences of 

the type guaranteed by Ono's work.  She found more than 70,000 new congruences, and her 

methods can readily be programmed into computers to generate additional partition 

congruences. 

 

29.  Is it amazing that an undergraduate made such progress on this problem?  Explain. 

 

                                                           
32

 Quoted in [Pet1]. 
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 INTERLUDE 

Srinivas Ramanujan: 
 

An equation for me has no meaning unless if expresses a thought of God. 

   -- Srinivas Ramanujan 

 

 
 

Srinivasa Iyengar Ramanujan Iyengar, known to most simply as Ramanujan as the 

other components of his name are surnames borne of various traditions, was born on 22 

December, 1887 in the small village of Erode, India.  Legend tells Ramanujan’s mother 

became pregnant several years after marriages only after her father prayed to the Goddess 

Namagiri to bless his daughter with offspring.  The son of an accountant, Ramanujan was 

born into the Brahmin caste - the highest, and most orthodox Hindu, level of the Indian caste 

system.  While he was deeply influenced by the traditions of this caste, his family, like most 

others in Southern India around this time, survived in relative poverty.  Ramanujan was one of 

six children, three of whom died before their first birthdays.  At age two Ramanujan 

contracted smallpox.  Ramanujan survived.  He would go on to live a short, often sickly, life.  

But Ramanujan's life was a life of extraordinary genius which would see him became India's 

foremost mathematician and a legend for the ages. 

 Ramanujan started school at age five.  While “quiet and meditative”, his mathematical 

abilities were recognized quite early.  He had a great ability to repeat all of the formulas and 

theorems he had been taught.  He could recite the digits of pi and the square root of two to as 

many places as listeners could bear to hear.  The apparently critical moment in Ramanujan’s 

mathematical development was at age 15 when he finally came into possession of a 
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significant book of mathematics - A Synopsis of Elementary Results in Pure and Applied 

Mathematics by George S. Carr.  This was a lengthy, two volume compendium that contained 

many of the important mathematical results through the middle part of the nineteenth century.  

It was hardly a text from which one could learn - it was very terse, almost dictionary like.  Yet 

Ramanujan set out to understand and establish all of the results in this text on his own.  His 

obsession with mathematics kept him from fulfilling the scholarships that he had won to 

government colleges.  He was inseparable from the two large notebooks that he filled with his 

mathematical ideas.  Ramanujan would later claim that his inspirations came in the form of 

dreams from the Goddess Namakkal. 

 In the early part of 1909 Ramanjuan became quite ill.  Later that year Ramanujan was 

married in an arranged marriage.  He would not live with his wife, age nine, until she turned 

twelve.  Throughout this time Ramanujan unwillingly accepted financial support from local 

benefactors so he could pursue his mathematics ruminations.  One such benefactor described 

him as “Miserably poor...  A short uncouth figure, stout, unshaved, not overclean, with one 

conspicuous feature - shining eyes...  He never craved for any distinction.  He wanted ... that 

simple food should be provided for him without exertion on his part and that he should be 

allowed to dream on.”  When Ramanujan tired of this support he became an office clerk.  But 

at each opportunity he sought to share his mathematical work with others who might be in a 

position to judge or appreciate it. 

 On the heals of several fortuitous introductions, Ramanujan was encouraged enough to 

write to G.H. Hardy - then a Fellow at Trinity College, Cambridge and who would become 

one of the twentieth century’s most famous mathematicians.  Ramanujan’s letter, dated 16 

January, 1913, is a picture of modesty: 

I beg to introduce myself to you as a clerk in the Accounts Department...  I have no 

university education... but I am striking out a new path for myself...  The results I get 

are termed by the local mathematicians as “startling”...  [Yet] the local 

mathematicians are not able to understand me in my higher flights...  I would request 

you to go through the enclosed papers.  Being poor, if you are convinced that there is 

anything of value I would like to have my theorems published...  Requesting to be 

excused for the trouble I give you, I remain, Dear Sir, Yours truly, S. Ramanujan. 

 The letter included more than 100 theorems that Ramanujan had discovered.  They are 

fabulously intricate wonders such as: 
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where the ellipsis ... means that the operation is continued indefinitely to infinity. 
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 Hardy would later try to reconstruct what it felt like for a professional mathematician 

to receive a “letter like this from an unknown Hindu clerk.”   

The first question I asked myself was whether I could recognize anything.  I had 

proved things rather like [equation] (1.7) myself, and seemed vaguely familiar with 

(1.8)...  I thought that as an expert in definite integrals, I could probably prove (1.5) 

and (1.6), and did so, though with a good deal more trouble than I had expected... 

The series formulae (1.1) - (1.4) I found much more intriguging...  [One is well-

known,] but the others are much harder then they look... 

The formulae (1.10)-(1.13) are on a different level and obviously both difficult and 

deep...  (1.10)-(1.12) defeated me completely; I had never seen anything in the least 

like them before.  A single look at them is enough to show that they could only be 

written down by a mathematician of the highest class.  They must be true because, if 

they were not true, no one would have had the imagination to invent them. 

 Hardy immediately arranged for Ramanujan to come to England.  Yet the prejudices 

of India’s caste system made Ramanujan feel that he could not accept Hardy’s invitation to 

come to Cambridge.  Moreover, Ramanujan’s mother would not give her consent.  Hardy 

made every effort to encourage him to come to Cambridge, even enlisting his friends as allies.  

While he was able to sway Ramanujan, it was not until Ramanujan’s mother announced that 

“she had had a dream on the previous night, in which she saw her son seated in a big hall 

amidst a group of Europeans, and that the goddess Namagiri had commanded her not to stand 

in the way of her son fulfilling his life’s purpose.”  On 17 March, 1914 Ramanujan sailed to 

England.  In April he was admitted to Trinity College - a remarkable honor.
33

  

 But what would be done with Ramanujan?  As Hardy remarked, “The limitations of 

his knowledge were as startling as its profundity.”  How do you teach somebody whose 

mathematical talents in a few narrow areas far surpass those of all living mathematicians, but 

is completely ignorant of so many important areas of mathematics - even those that might aid 

in his own area of interest?  But Hardy succeeded, and both mathematicians flourished under 

their collaboration.  Hardy reported, “I learnt from his much more than he learnt from me...  

His flow of original ideas shewed no symptom of abatement.” 

 Yet outside of mathematics Ramanujan did not prosper as well.  He had a very 

difficult time adjusting to life in England.  He was a strict vegetarian.  He cooked all of his 

food himself and had difficulty obtaining food that was compatible with his usual diet.  The 

climate of England was totally different from his native India.  The stone buildings of Trinity 

College were cold and damp.  Never having encountered such cold, Ramanujan slept in his 

overcoat, wrapped in a shawl.  It was not until a fellow Indian student at Trinity realized that 

Ramanujan did not understand the purpose of the many blankets spread neatly on his bed that 

Ramanujan learned to lift up the blankets and slide under them to keep warm.  England joined 

                                                           
33

 To quote Ramanujan's biographer Kanigel [Kan], "Among all of the colleges of Cambridge University, Trinity 

was the largest with the most lustrous heritage, home to kinds, poets, geniuses.  Issac Newton himself had 

studied there...  Lord Byron had gone to Trinity.  So had Tennyson, Thackeray, and Fitzgerald.  So had the 

historian Macaulay, and the physicist Rutherford, and the philosopher Bertrand Russell.  So had five English 

prime ministers." 
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World War I.  Trinity College housed open air hospitals for wounded soldiers and adequate 

vegetarian food became harder to come by.  Ramanujan was often sick.  In the spring of 1917 

he became particularly ill.  He was diagnosed with tuberculosis and placed in a sanatorium.  

Despite his illness, his impact spread and his reputation grew.  In May of 1918 he was elected 

as a Fellow to the Royal Society - one of the highest academic honors of the time.  His 

election was all the more remarkable as it came on a first ballot, was the first time an Indian 

had been so honored, and it came at the remarkably young age of 30.  Several other major 

honors were also bestowed on him during this year.  These honors seemed to have buoyed his 

health for a short time and he continued to develop beautiful and important mathematical 

discoveries. 

 Early in 1919 his health worsened again.  He returned to India where he died on 26 

April, 1920 at the age of 33.  He had no children.  He was survived by his wife and his 

parents.   

 The richness of Ramanujan’s mathematical legacy is in sharp contrast to trials of his 

brief and difficult life.  Ramanujan’s own published works are of sufficient importance to 

consider him one of the elite mathematicians of the twentieth century.  But his impact did not 

stop there.  He left many notebooks full of unpublished theorems, results, and ideas.  These 

notebooks have been intensely studied by mathematicians and have resulted in hundreds of 

papers whose contributions are direct results of the work laid out by Ramanujan.  Indeed, 

almost eighty years later, the notebooks of Ramanujan served as the impetus of the major new 

discovery by Ken Ono that you investigated in Topic 5.  Ono says that while he "was familiar 

with a lot of what he had done through the writings of more modern mathematicians, I didn't 

suspect that I would learn anything from studying Ramanujan's notes."  However, one 

mathematical identity, written in a particularly obtuse fashion, even for Ramanujan, struck 

Ono.  "This can't be right."  Yet it was.  This one identity helped Ono establish "spectacular" 

results that are "the most important work on partition congruences since the epic work of 

Ramanujan" and among the most notable of the past decade.  Ono "learned a valuable lesson.  

It sometimes really pays to read the original."  [Pet1]  Who knows how many other 

mathematical gems are still unearthed in Ramanujan's notebooks. 

 In his biography of Ramanujan, the biographer Kanigel [Kan] tells us Ramanujan's is: 

A story of one man and his stubborn faith in is own abilities.  But it is not a story that 

concludes, Genius will out -- though Ramanujan's, in the main, did.  Because so nearly 

did events turn out otherwise that we need no imagination to see how the least bit less 

persistence, or the least bit less luck, might have consigned him to obscurity.  In a 

way, then, this is also a story about social and educational systems, and about how 

they matter, and how they can sometimes nurture talent and sometimes crush it.  How 

many Ramanujans, his life begs us to ask, dwell in India today, unknown and 

unrecognized?  And how many in America and Britain, locked away in racial or 

economic ghettos, scarcely aware of worlds outside their own? 
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Investigations 

1.  Perspectives on Ramanujan 

 The wonderful mathematical expositor Martin Gardner (??-) reminds us: 

Biographical history, as taught in our public schools, is still largely a history of 

boneheads; ridiculous kings and queens, paranoid political leaders, compulsive 

voyagers, ignorant general - the flotsam and jetsam of historical currents. The men 

who radically altered history, the great scientists and mathematicians, are seldom 

mentioned, if at all. 

 The story of Ramanujan offers a perfect context to study the historical connections 

between Britain and India, Indian culture, English culture, academic culture in the late 

nineteenth century, the impact of World War I on European daily life, differences in learning 

styles, and many other interesting issues.  So bring the story of Ramanujan into your other 

classes to share.  See if the world looks different seen through the lens of one of the great 

mathematicians of the twentieth century.   

 

II.  A Gallery of Contemporary Mathematicians 
 

 Throughout this text the names of mathematicians have appeared in bold.  Hopefully 

this has come to help you see that mathematics is a very human science with a huge cast of 

characters.  Mathematics is not simply the work of a few greats like Euclid, Pythagoras, 

Newton, and a few others whose names are well-known.  As mathematical accomplishment 

grew dramatically in the twentieth century, its success and the identity of its pioneers became 

less and less well-known.  Most people would be embarrassed if they could not name several 

influential twentieth century artists, authors, politicians, or even scientists.  Yet few can name 

a twentieth century mathematician other than John Nash who was portrayed in a the hit 

Hollywood movie A Beautiful Mind [How].  This is quite unfortunate and is something your 

group of explorers (i.e. class) might consider addressing by creating a gallery of biographies 

of contemporary mathematicians - one done by each explorer. 

 You should see from the dates that follow the names of the mathematicians listed in 

this text that there is a huge case of twentieth century mathematicians.  The biography section 

of the MacTutor History of Mathematics Archive (available at www-groups.dcs.st-

and.ac.uk:80/~history/BiogIndex.html) has referenced biographies of over 400 

mathematicians born since 1900 and hundreds more who were born before 1990 but whose 

major accomplishments were in the twentieth century. 

 For those of you who have not ever seen a poster session, they are widely used to 

publicize, announce, and/or present the results of research investigations.  They are used in 

professional conferences (including virtually all conferences for mathematicians and 

scientists), college and university courses, and meetings of all kinds.  They are useful because 

many posters can be displayed without the time and space limitations that traditional 
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presentations impose.  Additionally, it makes it easier for participants to browse and find 

research of interest. 

 At our college we have created a gallery of biographical posters each celebrating the 

life of contemporary mathematician.  The posters are hung in Department of Mathematics 

hallways and classrooms for all to see - including students and faculty from other classes who 

are equally excited to see the many connections.  Each poster hangs for a week or more until 

it is replaced by another student's poster.  Over the course of the semester each student's 

poster has an opportunity to enlighten all those who pass by it.  A sign-up sheet insures that 

all students choose different mathematicians.  Over the course of the semester this means a 

general group of explorers (class) can create a gallery of 30 mathematicians to supplement the 

single biography that appears in this text. 

 To keep everybody involved, each poster is self-reviewed, peer reviewed, and 

reviewed by the teacher.  They are evaluated in five categories, which your group may decide 

to adjust however you see fit.  Our categories are: 

 An informative presentation of biographical data. 

 An engaging portrayal of the subject as a human being whose life and work everybody can learn 

from. 

 Success in using the subject's biography to aid in our efforts to demonstrate that mathematics is a 

vital, living, dynamic, and humanistic discipline. 

 Accessible description(s) of the subject's mathematical contributions, impact on the field of 

mathematics, leadership in the community of mathematicians, broader intellectual impact, and/or 

broader societal impact. 

 A physical construction of a high quality poster, including:  appropriate design, pleasing visual 

layout, effectiveness, appropriate mix of media and information, effort, etc. 

 We have found this to be a wonderful way to share the human component of 

mathematics.  We invite your group of explorers to try it as well.  
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 TOPIC 5 
 

Power Partitions 
 

The only way to learn mathematics is to do mathematics 

      --  Paul Halmos 

 

The principal agent is the object itself and not the instruction given by the 

teacher. It is the child who uses the objects; it is the child who is active, and not the 

teacher.  

--  Maria Montessori 

 

No thought, no idea, can possibly be conveyed as an idea from one person to 

another. When it is told it is to the one to whom it is told another fact, not an idea... 

Only by wrestling with the conditions of the problem at first hand, seeking and 

finding his own way out, does he think.  

--  John Dewey  

 

Another Story about Gauss 
 

Some of the remarkable accomplishments of the prodigy Gauss have already been 

told.  We start here with another story of his mathematical precociousness. 

It is sometimes reported that as a child of three Gauss corrected errors in his father's 

payroll calculations.
34

  More often repeated, and more widely accepted, folklore involves a 

"busywork" problem that an elementary school teacher assigned Gauss and his schoolmates.  

The problem was to find the sum of the numbers between one and one-hundred and write the 

correct answer on their slate.  In other words, on small slates the students were to compute the 

sum 

1 + 2 + 3 + … + 98 + 99 + 100. 

Gauss answered almost immediately; 5050. 

 

Mathematics Manipulatives 
 

Gauss noticed a pattern that can be nicely illustrated by mathematical manipulatives –

concrete, physical objects that are used for hands-on exploration – that are widely used in 

contemporary elementary mathematics classrooms. 

The manipulatives used here are simply small cubes of a uniform size which can be 

snapped together; they are sold under the names Multi-link Cubes
®
 and Unifix Cubes

®
.  If 

                                                           
34

 See, e.g., [Bur, p. 510]. 
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you have access to these manipulatives, you should grab a pile and explore with them as you 

read.   

So we can provide illustrations, we begin with a smaller version of Gauss' problem -- 

find the sum of the numbers between one and eight.  We can represent each of the summands 

concretely using the cubes: 

 
 

Fig. 5.1 The numbers 1 – 8 concretely as Multi-link Cubes
®
. 

 

Snapping our cubes together, the sum of these numbers -- the answer to our problem -- is 

simply the number of cubes in the "staircase” pictured in Fig. 5.2.  This does not seem like 

much help until one notices that if we take two of these staircases, then they will fit together 

perfectly into one rectangle.  See Fig. 5.3.  And it is a simple matter to find the number of 

cubes that make up this rectangle – it is simply the area of the rectangle: base (8) times height 

(9), which equals 72 cubes.   

 

   
 

Fig. 5.2 The 1 + 2 + … + 7 + 8 staircase.  Fig. 5.3 Two 1 + 2 + … + 7 + 8 staircases. 

 

Since we only wanted the number of cubes in one staircase, our answer is half this many.  In 

other words, using these manipulatives we have just shown that 

36.
2

72
 

2

98
 8  7  6  5  4  3  2  1  
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Of course, finding the sum of the first eight numbers is not a lofty undertaking.  What 

is important about this example is the idea or strategy on which it is based for the idea can be 

applied to many variations of this problem - the least of which is Gauss' problem.  Go ahead; 

use this idea to show that Gauss was right, that 

1 + 2 + 3 + ... + 98 + 99 + 100 = 5050. 

What other Gauss-like challenges might you find eight- and nine-year old children 

solving in contemporary mathematics classrooms with their brightly colored manipulatives?  

Well, you might find them determining the sums of any of the following arithmetic series: 

1 + 4 + 7 + ... + 34 + 37 + 40 = ? 

1 + 5 + 9 + ... + 93 + 97 + 101 = ? 

5 + 8 + 11 + ... + 21 + 24 + 27 = ? 

Try it on your own with manipulatives.  Examples like these should help you gain a sense of 

how empowering simple mathematics manipulatives, like little, colored, attachable cubes, are. 

 And, while you have a pile of manipulative cubes in front of you, you might also 

consider a question that will be one of the main foci of the next topic: 

Can you make a large cube out of your cubes that can be rearranged into 

exactly two smaller cubes using no extra pieces and with none left over? 

 

Proofs Without Words 
 

Anyone who has lived through a high-school geometry course, where the dominant 

mode of communication was the veritable two-column proof, might agree with English 

astronomer Sir Arthur Eddington (1882-1944) who said: 

Proof is an idol before which the mathematician tortures [her]himself.   

Yet, a much more appropriate view of proof is that of Andrew Gleason who said: 

Proofs really aren't there to convince you that something is true -- they're 

there to show you why it is true, 

or of Gian-Carlo Rota who said: 

Proof is beautiful when it gives away the secret of the theorem, when it leads 

us to perceive the actual and not the logical inevitability of the statement that 

is proved.  

A style of mathematical proof that is much more convincing than two-column 

geometry proofs is something mathematicians call Proofs Without Words.   

Let's add up consecutive odd numbers starting at 1,  
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1 = 1 

1 + 3 = 4 

1 + 3 + 5 = 9 

1 + 3 + 5 + 7 = 16. 
 

Notice a pattern?  All of the answers are squares!  You can use Multi-link Cube
®
 staircases 

here as we did above since each of these series is an arithmetic series.  But you can also use 

Multi-Link Cubes
®
 in a different way to see why the sum of each of these series must be a 

square: 

 
 

Fig. 5.4 Proof without Words – Sums of Odds. 
 

 Certainly, this proof lives up to the ideal of Gleason and Rota.  While they use 

mathematics manipulatives that would make Maria Montessori proud, they should not be 

considered a learning tool only for the young.  “Proof without Words” is a regular column in 

some of the most widely read mathematics journals, and two full length books containing 

exemplary examples of these proofs have been published.
35

   

 Closer to our study of partitions, one finds many proof without words type arguments 

in mathematical texts and research papers.  For example, we can represent partitions 

graphically: 

• • • • • • • • 

 

• • • • • • 

 

• • •  

 

• 

 
Fig. 5.5 Two partitions of 18. 

 

Fig. 5.4 gives two partitions of the number 18: 18 = 8 + 6 + 3 + 1 reading horizontally and 18 

= 4 + 3 + 3 + 2 + 2 + 2 + 1 + 1 reading vertically.  These partitions are called conjugate 

                                                           
35

 The journals are American Mathematical Monthly, Mathematics Magazine, and The College Mathematics 

Journal.   The books are Proofs without Words and Proofs without Words II both edited by Roger B. Nelsen.  

All are published by the Mathematical Association of America. 
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partitions.  Figures such as this provide the critical insight in proving the Rogers-Ramanujan 

Partition Identity.
36

  In Hardy and Wright’s classic text [HaWr] diagrams such as: 

 

 
 

Fig. 5.6 Partition diagrams. 
 

are commonplace in combinatorial proofs about partitions.  And one of the more important 

results in the theory of partitions is Euler’s Pentagonal Number Theorem which bears no 

small relationship to the figure: 

 
 

Fig. 5.7 Pentagonal numbers. 
    

Mathematicians, it seems, would be perfectly at home in a progressive, elementary 

school mathematics classroom with young children exploring all sorts of patterns via Multi-

link Cubes
®
. 

 

Investigations 

 

I.  Interesting Numbers 
   

 Earlier in this chapter we read about the great English mathematician G.H. Hardy and 

the prodigy Srinivas Ramanujan.  As noted, it was Hardy that brought Ramanujan to Oxford 

to share in his remarkable mathematical abilities.  Hardy tells a touching and oft-retold story 

of his visit to see Ramanujan in the hospital before his untimely death: 

"The cab I rode to the hospital had a particularly dull number: 1729."  "No 

Hardy," Ramanujan replied immediately, "it's a very interesting number.  

                                                           
36

 See pp. 736-7 of “Partition Identities – from Euler to the Present”, H.L. Alder, American Mathematical 

Monthly, vol. 76, no. 7, Aug.-Sept. 1969, pp. 733-46. 
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It is the smallest number that is expressible as the sum of two cubes in two 

different ways." 

1.  Make a table of the first dozen cubes. 

 

2.  Use this table to write the number 1729 as the sum of two cubes. 

 

3.  Use this table to write the number 1729 as the sum of two cubes different from those used 

in investigation 2). 

 

4.  Are your solutions to investigations 2) and 3) partitions?  If so, is there a word that would 

describe precisely what type of partitions they are? 

 

5.  How remarkable is it that Ramanujan knew this about the number 1729?  What does it tell 

you about his fluency with numbers? 

 

II.  Square Partitions 
 

In the story above about the number 1729 Ramanujan was concerned with both the 

number of cubes used to provide a sum of 1729 and the number of ways in which this can be 

done.  Instead of considering both issues at once, let us begin by considering the number of 

ways a given number can be partitioned into powers. 

 

6.  The numbers 1=1
2
, 4=2

2
, 9=3

2
,... are called perfect squares.  Define the term perfect 

square. 

 

7.  Write out a table of the first 20 perfect squares. 

 

We called 6 = 4 + 1 + 1 a partition of the number 6.  Since each of 4, 1, and 1 are 

squares we can also write 6 as 6 = 2
2
 + 1

2
 + 1

2
.  We will call partitions of this form square 

partitions. 

 

8.  Find all of the square partitions of the numbers 1 - 8. 

 

9.  Use your answers to 8) to complete the following table: 
 

 

Integer; n # Square Partitions; s(n) 

 1   1 

 2   1 

 3   1 

 4 

 5 

 6 

 7 

 8 
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10.  Find a pattern in the number of square partitions and use it to predict the number of 

square partitions for the numbers 9 - 12. 

 

11.  Find all of the square partitions of 9.   

 

12.  Does your result in 11) agree with your conjecture in 10)?  What does this tell you about 

the type of reasoning you used to make this prediction? 

 

13.  If you continued to look for patterns in the square partitions, how successful do you think 

your efforts might be in comparison to those in Topic 4 for regular partitions?  Explain. 

 

III.  Cubical Partitions 
 

14.  Find all of the cubical partitions of the numbers 1 - 18. 

 

15.  Use your answers to 14) to complete the following table: 
 

Integer; n # Cubical Partitions; c(n) 

 1   1 

 2   1 

 3   1 

 4 

  

   
 

 18 

 

16.  Do you think there is an indefinitely repeating pattern in the number of cubical partitions?  

Explain. 

 

 Our success with finding patterns in the number of partitions, be it regular, square, or 

cubical, has been limited.  These so-called partition enumeration problems are indeed quite 

hard; many of these not yet answered after intensive study.  So let us turn to a different 

problem suggested by the story of Ramanujan and 1729. 

 

IV.  Minimal Square Partitions 
 

In the story above about Ramanujan, 1729 was special because it was the smallest 

integer that was the sum of two cubes in two different ways.  In other words, it was the 

smallest integer that had two different cubical partitions, each with two terms.  

Every number certainly has a square partition -- just add 1=1
2
 as many times as you 

need to reach the number.  For example, 8 = 1
2
 + 1

2
 + 1

2
 + 1

2
 + 1

2
 + 1

2
 + 1

2
 + 1

2
.  Because 

every number can be written this way, there is nothing to study.  On the other extreme, the 

perfect squares 1, 4, 9, … are quite special for they have square partitions where only one 
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term needs to be added: e.g. 1 = 1
2
, 4 = 2

2
, and 9 = 3

2
.  8 is not a perfect square, but it has a 

square partition with two terms; i.e. it can be written as the sum of two squares: 8 = 2
2
 + 2

2
. 

 

17.  3 is not a perfect square; can it be written as the sum of two squares?  If not, what is the 

smallest number of squares needed to write 3 as a sum of squares? 

 

18.  Use your results from questions above to complete the following table: 

 

 Integer; n  Minimum Square Partition Terms in the Minimum Square Partition 

 1 1
2
  1 

 2 1
2
 + 1

2
  2 

 3 

 4 2
2
  1 

       
 12 

 

19.  Is there a clear pattern to the number of terms in the minimum square partitions?  

Explain. 

 

20.  What was the largest number of terms that were needed from all of the minimum square 

partitions in the table in investigation 18)? 

 

Let us call the number which answers investigation 20) Waring's number for square 

partitions and denote by W2.  We would like to know if W2 is universal.  In other words, we 

want to know if every positive integer can be square partitioned using this many or fewer 

terms. 

 

21.  Does the number 19 have a square partition involving W2 or fewer terms?   

 

22.  Does the number 32 have a square partition involving W2 or fewer terms?  

 

23.  Does the number 57 have a square partition involving W2 or fewer terms?  

 

24.  Does the number 79 have a square partition involving W2 or fewer terms?  

 

25.  Does the number 187 have a square partition involving W2 or fewer terms? 

 

26.  Are you becoming confident that every whole number can be square partitioned in W2 or 

fewer terms?  Explain why or why not. 

 

 As early as 1621, the French mathematician Claude Bachet (1581-1638) suggested 

that W2 terms were sufficient to square partition every positive integer.  He checked every 

number up to 325 as evidence in support of the truth of his conjecture.   
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27.  How long do you think it would take to check whether the first 325 positive integers 

could be square partitioned by at most W2 terms?  Once you did this, would you have a 

proof that W2 terms were sufficient to square partition every positive integer?  Explain. 

 

 Both Bachet and Fermat believed that the Greek mathematician Diophantus (circa 

250 A.D.), one of the prominent historical figures in the history of number theory, was aware 

that W2 terms were sufficient.  Yet Bachet never had a full proof and Fermat, writing in the 

margins of a copy of Diophantus' book Arithmetica, wrote that he had a proof but never 

wrote it down.   

 In 1772 Lagrange published a full proof which demonstrated that W2 terms are enough 

to square partition every number.  Lagrange acknowledged his indebtedness to the supporting 

work of Euler, who had worked on the problem for 40 years!  Remarkably, just one year after 

Lagrange proved the result, Euler gave a much simpler proof -- one that is essentially the 

proof that is taught in undergraduate number theory courses.
37

  

 

28.  Complete the statement of Lagrange's theorem on square partitions below: 

Theorem (Lagrange; 1772)  Every positive integer can be written as 

the sum of _____________________________ squares. 

 

V.  Waring’s Problem 
 

 A natural question is to ask whether a similar result holds for cubical partitions, 

quartic (fourth power) partitions, quintic (fifth power) partitions, and the like.  In fact, this 

generalization was first explicitly considered by the English mathematician Edward Waring 

(1741-1793) in 1770 in his book Meditationes Algebraicae.  His conjecture, that a similar 

result holds for all power partitions, has become known as Waring's problem.  We explore it 

for cubical partitions below.  

 

29.  Use your results from investigations above to complete the following table: 

 

 Integer; n  Minimum Cubical Partition Terms in the Minimum Cubical Partition 

 1 1
3
  1 

 2 1
3
 + 1

3
  2 

 3  

       
 8 2

3
  1 

       
 18 

 

30.  Is there are clear pattern to the number of terms in the minimum cubical partitions?  

Explain. 

 

                                                           
37

 E.g. Chapter 12 of [Bur]. 



 77 

31.  What was the largest number of terms that were needed from all of the minimum cubical 

partitions in the table in investigation 29)? 

 

Just as above, let us call the number we are looking for Waring's number for cubical 

partitions and denote it by W3.   

 

32.  Do you think that the number you found in investigation 31) is W3?  Explain. 

 

33.  Does the number 43 have a cubical partition involving the number of terms considered in 

31) or fewer?   

 

34.  Does the number 81 have a cubical partition involving the number of terms considered in 

31) or fewer? 

 

35.  Does the number 107 have a cubical partition involving the number of terms considered 

in 31) or fewer? 

 

36.  Do you think you know what W3 is?  Explain. 

 

37.  Does the number 23 have a cubical partition involving the number of terms considered in 

31) or fewer?  If not, what is the number of terms in the minimum cubic partition? 

 

38.  Does the number 239 have a cubical partition involving the number of terms considered 

in 31) or fewer?  If not, what is the number of terms in the minimum cubic partition? 

 

39.  Do you think you know what W3 is?  Explain. 

 

40.  Would it surprise you if I told you that it had been proven deductively that 23 and 239 

were the only positive integers that required this many terms to be cubically partitioned?  

Explain. 

 

 In fact, it was proven in 1939 by Leonard Eugene Dickson (1874-1954) that you will 

never need more cubes to cubically partition any positive integer than you needed in 

investigations 37) and 38) above.
 38

  In other words, we know exactly what W3 is.  And, if it 

wasn’t for the two anomalies 23 and 239, the number you found in investigation 31) would be 

W3. 

 

VI.  Solving Waring’s Problem 
 

 Waring’s problem concerns higher and higher powers ad infinitum and we have seen 

that the work of many prominent mathematicians only settled the problem up to the power  

                                                           
38

 See, e.g., “On expressing integers as the sum of cubes and other unsolved number-theory problems,” by 

Martin Gardner, Scientific American, Dec. 1973, pp. 118-21. 
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n = 4.  So it might seem that a solution to Waring’s problem might be difficult if not 

downright impossible. 

 In fact, Waring’s problem was “solved” in 1909 by David Hilbert (1862-1943), one 

of the twentieth century’s greatest mathematicians.  Hilbert “solved” Waring’s problem by 

proving that there is always a number Wn so that every positive integer can be partitioned by 

Wn or fewer n
th

 powers.  Interestingly, Hilbert’s proof was an existence proof – it proved that 

these Wn existed for every n without telling you what the Wn actually were!  

 

41.  Give several examples of problems where you can prove that the answers exist without 

explicitly finding the answers, or where the answers might be remarkably hard to actually 

find. 

 

 Encouraged by Hilbert’s existence proof, mathematicians have spent the twentieth 

century trying to find the values of the Waring numbers. 

 

42.  Fill in the following chart for the first three Waring numbers: 

 Partitions Waring Number, Wn  

 Integer W1 =  

 Square W2 = 

 Cubic W3 = 

  

43.  Use 42) to make a conjecture about the remaining Waring numbers.
39

  

  

44.  In fact, it was determine in 1986 that the fourth Waring number is .194W   Does this 

result agree with your conjecture in 43)?  Do you have any confidence that you might be 

able to find a pattern in the Waring numbers considering this new information?  Explain. 

 

45.  While mathematicians believe they finally have found a pattern, albeit a fabulously 

complicated one, that does predict the full pattern, they have been unable to completely 

prove this result.
40

  Is this surprising to you?  Explain. 

 

46.  What does investigation 45) suggest to you about how much is known about the positive 

integers, the "simplest" part of mathematics? 

                                                           
39

 Determined precisely only in 1986! 
40

 The pattern is Wn ≈ 2
n
 + Int((3/2)

 n
) – 2.  This pattern is explored more fully in the section “Euler’s formula for 

Waring numbers” in the Additional Investigations.  
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 TOPIC 6 
   

The World's Greatest  

Mathematical Problem 
 

I had this very rare privilege of being able to pursue in my adult life what had 

been my childhood dream. I know it's a rare privilege but, if one can do this it's more 

rewarding than anything I could imagine.   

-- Andrew Wiles 

 

The Pythagorean Theorem 
 

 Ask anybody with a high-school education what formula they remember best from 

their 10-plus years of mathematics courses, and they are most likely to reply "a
2
 + b

2
 = c

2
."  

Often, although not always, people can tell you that this formula describes the relationship 

between the legs and the hypotenuse of any right triangle and is called the Pythagorean 

theorem. 

 This important theorem is illustrated in the sequence of figures below, which actually 

provide a deductive proof of this theorem.
41

  Although this theorem is, by name, attributed to 

 
 

Fig. 6.1  Proof without words:  The Pythagorean Theorem 

 

the most famous of all mathematicians -- Pythagoras -- it was well-known by many other 

ancient cultures.  The Babylonian clay tablet known as Plimpton 322, which dates to about 

1700 B.C., shows clearly that this culture was aware of the Pythagorean theorem more than 

one-thousand years before the birth of Pythagoras. 
 

                                                           
41

 From Discovering Geometry by Michael Serra, Key Curriculum Press, 1997. 
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Hundreds of Proofs 
 

 The Pythagorean theorem is central to mathematics and its culture.  As a homage to its 

importance, several hundred different proofs of this result have been constructed.  In fact, 

entire books of different proofs have been assembled, one with over 350 different proofs!
42

  

One notable proof was found by Ohio Congressman James A. Garfield who went on to be the 

20
th

 President of the United States.  

 

Pythagorean Triples 
 

 Although we generally recite the Pythagorean theorem in its algebraic garb, we are no 

doubt aware of its clear links to geometry.  The Greeks did not have algebra as we would 

think of it now; they thought of results like the Pythagorean theorem in purely geometric 

terms.  However, it is also the case that the Pythagoreans believed that "all is number."  The 

connection between the Pythagorean theorem and special relationships between certain 

numbers was not lost on the Greeks. 

 The numbers 3, 4, 5 are said to form a Pythagorean triple because they are positive 

integers that satisfy the Pythagorean Theorem: 

3
2
 + 4

2
 = 5

2
 since 3

2
 + 4

2
 = 9 + 16 = 25 = 5

2
. 

It is likely that you remember such triples from learning about the Pythagorean theorem.   

 

Pythagorean Triples as Partitions 
 

 There is a close connection of such triples to earlier results we have been considering 

in this section.  Namely, 3
2
 + 4

2
 is a square partition of the square 5

2
.  Prior to this, we have 

been trying to find patterns among all partitions of a given type.  For example, in 

Investigation Section IV of Topic 5 we showed that it is possible for every positive integer to 

be square partitioned by 4 of fewer squares.  That's fine, but it is also interesting to consider 

whether there are numbers that can be partitioned in particularly nice ways. 

 Partitioning 5
2
 as 1

2
 + 1

2
 + ... + 1

2 
 is quite boring -- any number can be square 

partitioned in such a way.  In discovering Waring's problem in the previous Topic, we looked 

at the minimum partitions. The number 5
2
 has a much more interesting minimal partition --    

5
2
 = 3

2
 + 4

2
. 

This partition is the simplest possible square partition after the trivial 5
2
 = 5

2
.  Thus, 3, 4, and 

5 share a special relationship, a relationship that was studied in detail by ancient cultures.  

What other numbers share this special relationship?  You will investigate this question below. 

 
                                                           
42

 The Pythagorean Propostion by E.S. Loomis, National Council of Teachers of Mathematics. 
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Fermat’s Last Theorem 
 

 Earlier we worked not just with square partitions but with cubical partitions, as well.  

There is certainly a natural analogy.  Namely, we can find positive integers a, b, and c such 

that a
2
 + b

2
 = c

2
.  Can we find positive integers a, b, and c such that  

a
3
 + b

3
 = c

3
? 

If we can, what can we learn about them?  After this, there is nothing to stop us.  We might as 

well ask whether there are solutions to a
4
 + b

4
 = c

4
 and what we can learn about them.  And 

then a
5
 + b

5
 = c

5
.  And so on. 

Pierre de Fermat, who we’ve mentioned often in our investigations, asked exactly 

these questions.  He asked these questions as he studied the Pythagorean Theorem from a 

translation of the important text Arithmetica which was written by Diophantus of Alexandria 

(circa 250 A.D.).  Fermat had a habit of writing notes in the margins of this text as he read.  

He made many important discoveries that are recorded in this way; including, as we have 

already noted, observations about the sums of squares.  It is unfortunate, but rarely did he 

write down proofs of these results.  He was content simply to record these discoveries and 

share them with various correspondents with whom he shared mathematical interests.   

We are thankful to Fermat’s son Samuel for publishing, in 1670, an edition of 

Diophantus’ Arithmetica which contained all of Fermat’s marginalia.  Had Fermat’s 

observations not been so preserved, number theory’s progress might have been set back a 

century or more.  These results were all subsequently investigated and, on the large, proved to 

be correct.  All, that is, except his result on solutions to the equation a
n
 + b

n
 = c

n
 which 

remained mysterious.  For this reason, the result has since been referred to as Fermat’s Last 

Theorem. 

Around 1637 Fermat scribbled the following (in)famous note in his copy of 

Arithmetica near Diophantus' results on Pythagorean triples: 

It is impossible to write a cube as a sum of two cubes, a fourth power as a 

sum of two fourth powers, and, in general, any power beyond the second as a 

sum of two similar powers.  For this, I have discovered a truly wonderful 

proof, but the margin is too small to contain it. 

Fermat was claiming that Pythagorean triples were the beginning and end of the line - there 

were no other similar results.  That is, no matter how hard one looked, one would never find 

whole number solutions to the Fermat equation a
n
 + b

n
 = c

n
 when n  3.  This result has 

become known as Fermat's Last Theorem. 
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Investigations 

 

I.  Pythagorean Triples 
 

1.  Explain why the figures that make up Fig. 6.1 provide a deductive proof of the 

Pythagorean theorem, supplying any missing details as necessary. 

 

2.  Use your table of squares from Investigations Section II from Topic 5 to find all 

Pythagorean triples involving positive integers none of which are greater than 20. 

 

3.  In investigation 2) you should have found 6 Pythagorean triples.  Have you found these 

triples inductively or deductively?  Explain. 

 

II.  Consecutive and Other Special Pythagorean Triples 
 

 We'd like to learn as much as we can about Pythagorean triples.  It is natural to look 

for patterns. 

The Pythagorean triple 3, 4, 5 is interesting because the numbers are consecutive. 

 

4.  Based on your search of the table of squares in investigation 2), do you think there is 

another consecutive Pythagorean triple?  Explain. 

 

5.  Denote the number a in a
2
 + b

2
 = c

2 
by the unknown variable x.  Suppose a, b, c is a 

consecutive Pythagorean triple.  Express b and c in terms of the unknown x.

6.  Use your expressions in investigation 5) to express the Pythagorean theorem only in terms 

of the unknown x.  Simplify your equation as much as possible. 

 

7.  Solve the equation in investigation 6) to determine the unknown x. 

 

8.  What do your results from investigations 4) – 7) tell you about the number of consecutive 

Pythagorean triples?  Does it tell you this inductively or deductively?  Explain. 

 

9.  Can a Pythagorean triple consist of all even numbers?  Explain. 

 

10.  Can a Pythagorean triple consist of all odd numbers?  Explain. 

 

11.  How many different Pythagorean triples do you think there are?  Explain. 

 

12.  The Pythagorean triple 3, 4, 5 is the most basic triple there is.  It generates many other 

related triples.  Find several of these triples, and explain how they are generated by the 

triple 3, 4, 5. 

 

13.  Extending the pattern in problem 12, find a dozen Pythagorean triples in the family 

generated by 3, 4, 5.   
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14.  Denoting a by 3x, where x is any positive integer, prove deductively that there are in fact 

infinitely many Pythagorean triples in the family generated by 3, 4, 5. 

 

III.  Characterizing Pythagorean Triples 
 

  In their studies of Pythagorean triples both Euclid, in his Elements, and Diophantus, in 

his Arithmetica, investigated what amounted to the following algebraic parameterizations: 

a = 2mn b = m
2
 - n

2
  c = m

2
 + n

2
, 

where m > n are both positive integers. 

 

15.  Complete the following chart based on the parameterizations given above. 

 

 m n a = 2mn b = m
2
 - n

2
  c = m

2
 + n

2
  a, b, c = Pythagorean triple? 

 2 1 4 3 5 Yes 

 3 1 

 3 2 

 4 1 

     

 5 4 

 

16.  Do you believe that this pattern will continue indefinitely?  On what type of reasoning are 

you basing your conclusion? 

 

17.  Prove algebraically that the parameterizations yield a Pythagorean triple for every 

appropriate value of m and n. 

 

18.  Do you think that the parameterization above accounts for all possible Pythagorean 

triples?  Check all of the Pythagorean triples you found in Investigation 2) and see 

whether they are accounted for by this parameterization. 

 

 The parameterization above was known before the birth of Christ.  However, it was 

not known until much later that it indeed accounted it for all primitive Pythagorean triples.  

This definitive result was, as far as we know, first established by Fibonacci in his 1225 A.D. 

text Liber Quadrotorum.  

 

IV.  Fermat’s Last Theorem for n=3 
 

 Having taken care of the Pythagorean triples, we would like to move on to the higher 

powers that Fermat mentioned in his marginalia. 

 In Investigation Section V of Topic 5, we saw that there are only two cubical 

partitions of the cube 8:  2
3
 and 1

3
 + 1

3
 + 1

3
 + 1

3
 + 1

3
 + 1

3
 + 1

3
 + 1

3
.  So 2

3
 cannot be 

partitioned into the sum of two cubes. 

 

19.  Can the cube 27 = 3
3
 be partitioned into the sum of two cubes?  Explain. 
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20.  Can the cube 64 = 4
3
 be partitioned into the sum of two cubes?  Explain. 

 

21.  Can the cube 125 = 5
3
 be partitioned into the sum of two cubes?  Explain. 

 

22.  Can the cube 216 = 6
3
 be partitioned into the sum of two cubes?  Explain. 

 

23.  Can the cube 343 = 7
3
 be partitioned into the sum of two cubes?  Explain. 

 

24.  Can the cube 512 = 8
3
 be partitioned into the sum of two cubes?  Explain. 

 

25.  Do you think that there is any cube that can be partitioned into the sum of two other 

cubes?  Explain. 

 

 In fact, by 1750 Euler had proven that Fermat was correct in the special case when  

n = 3:  there are no positive integers which solve the Fermat equation a
3
 + b

3
 = c

3
.   

 Since one cannot ever cubically partition a cube into the sum of two cubes, it is natural 

to wonder whether three cubes might occasionally suffice.  They can. 

 

26.  Show that 6
3
 can be partitioned into the sum of three cubes. 

 

Over time many prizes have been offered for solutions to Fermat’s Last Theorem.  For 

example, an English doctor named Paul Wolfskehl (1856-1906), who became afflicted with a 

debilitating case of multiple sclerosis, credits the intrigue of Fermat's Last Theorem with 

keeping him from committing suicide.  He bequeathed a large trust to be awarded to the first 

person to actually solve this problem.
43

   

 So numerous were the crackpot “solutions” that the work of judging these solutions 

overwhelmed the mathematicians in charge of the award.  The noted number theorist 

Edmund Landau (1877-1938) “had postcards printed which read, ‘Dear Sir of Madam:  

Your attempted proof of Fermat’s Theorem has been received and is herewith returned.  The 

first mistake is on page ______, line _____.’  Landau would give them to his students to fill in 

the missing numbers.”
44

  

                                                           
43

 For a detailed discussion see "Paul Wolfskehl and the Wolfskehl prize", by Klaus Barner, Notices of the 

American Mathematical Society, vol. 44, no. 10, November 1997, pp. 1294-1303.   
44

 From Elementary Number Theory by Underwood Dudley, W.H. Freeman and Co., p. 136. 
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V.  Fermat’s Last Theorem for n=4 
 

 After the integers (power 1), the squares (power two), and the cubes (power three) 

comes the quartics, numbers of the form m
4
.   

 

27.  Make a table of the first dozen quartics. 

 

28.  Can any of the quartics in the table in 27) be partitioned into the sum of two other 

quartics?  Explain in detail. 

 

29.  Do you believe, as Fermat claimed, that no quartic can be partitioned into the sum of two 

quartics?  Explain in detail. 

 

 In fact, Fermat himself gave a deductive proof in the special quartic case n = 4: there 

are no positive integers which solve the Fermat equation a
4
 + b

4
 = c

4
.  This proof was given 

in the margins of one of his texts, just like the statement of the full Last Theorem.  Only this 

time the margin was large enough to contain the proof!
45

 

 

30.  Why do you think Fermat chose to prove the special n = 4 case of his Last Theorem 

when he believed he had a proof of the more general result which includes the n = 4 case 

as a consequence? 

 

 

VI.  Euler’s Conjecture 
 

31.  Can the quartic 2401 = 7
4
 be partitioned into the sum of three quartics?  Explain. 

 

32.  Can the quartic 4096 = 8
4
 be partitioned into the sum of three quartics?  Explain. 

 

33.  Can the quartic 6561 = 9
4
 be partitioned into the sum of three quartics?  Explain. 

 

34.  Do you think that there is any quartics that can be partitioned into the sum of three other 

quartics?  Explain. 

 

35.  Use the following computations, done with the help of the mathematical software 

Scientific Workplace, to show that the quartic 353
4
 = 15,527,402,881 can be partitioned as 

the sum of four quartics: 

353
4
 = 15,527,402,881  

315
4
 = 9,845,600,625 

272
4
 = 5,473,632,256 

120
4
 = 207,360,000 

 

36.  Use your observations in investigations 25), 26), 29), and 31) – 35) to complete the 

following conjecture due to Euler: 

                                                           
45

 "Fermat's Last Theorem and modern arithmetic", by K.A. Ribet and B. Hayes, American Scientist, vol. 82, 

March-April 1994, pp. 144-56. 
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Conjecture (Euler; 1769)  The n
th

 power m
n
 of the positive integer m 

cannot be partitioned into the sum of other n
th

 powers, in a non-

trivial way, using ___________________________ terms.
46

   

 

37.  If Fermat's Last Theorem is true, does the truth of Euler's conjecture follow as a 

consequence?  Explain in detail, using specific exponents to illustrate the connections 

and/or differences. 

 

38.  If Euler's conjecture is true, does the truth of Fermat's Last Theorem follow as a 

consequence?  Explain in detail, using specific exponents to illustrate the connections 

and/or differences. 

 

VII.  Solutions to Special Cases of Fermat’s Last Theorem 
 

 Since its statement, there was no progress in settling Euler's conjecture.  The same is 

not true for Fermat's Last Theorem.  As we said, Euler and Fermat had settled the n = 3 and n 

= 4 cases, respectively.  Many decades later, in the 1820's, the French mathematician 

Legendre and the German mathematician J.P.G. Lejeune Dirichlet (1805-1859) gave proofs 

of the n = 5 case.  Dirichlet later gave a proof for n = 14 as well, partially rescuing his 

doomed efforts to prove the n = 7 case. 

 A remarkable breakthrough came in the 1820's when an unknown M. Leblanc proved 

that Fermat's Last Theorem holds whenever the exponent n is a special type of prime.  These 

special primes are quite numerous, possibly even infinite, and include all of the primes 2, 3, 5, 

11, 23, 29, 41, 53, 83, 89.  M. Leblanc, whose identity was unknown, became an immediate 

cause celebre!  

 M. Leblanc was, in fact, Sophie Germain (1776-1831), a French woman who was not 

allowed to study at the universities because of her sex, but who had been secretly securing and 

studying notes from the classes of France's finest mathematicians.  So remarkable were her 

results that the community of mathematics had no option but to except her into its circles.  

Said Gauss, considered one of the greatest mathematicians of all time,  

When a person of the sex which, according to our customs and prejudices, 

must encounter infinitely more difficulties than men... succeeds nevertheless 

in surmounting these obstacles and penetrating the most obscure parts of 

[number theory], then without doubt she must have the noblest courage, quite 

extraordinary talents and superior genius. 

The special prime exponents which were at the heart of Germain's results are called Germain 

primes in her honor. 

 Progress on special cases of Fermat's Last Theorem continued.  At a 1 March, 1847 

meeting of the Paris Academy, the French mathematician Gabriel Lame (1795-1870) 

                                                           
46

 See, e.g., History of the Theory of Numbers, vol. II, by L.E. Dickson, New York, 1934. 
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announced that he had proven Fermat's Last Theorem.  However, there was immediate 

controversy about the validity of the proof.  There appeared to be gaps in the proof.   

 The German mathematician Ernst Kummer (1810-1893) not only found explicit 

examples where Lame's proof broke down, but he was also able to repair the proof for 

infinitely many exponents, particularly those exponents that are now known as regular 

primes.  Alas, there were still infinitely many exponents that remained to be checked. 

 As noted above, awards were offered for solutions to Fermat’s Last Theorem.  Later, 

computers helped push the search for counter-examples to exponents n > 4,000,000.
47

  Yet, 

hundreds of years of searching left both Fermat's Last Theorem and Euler's conjecture 

unblemished -- no counter-examples had been found -- but unsolved, as well. 

 

39.  Given the long, fruitless search for counter-examples, do you suppose that 

mathematicians were content with the apparent truth of these conjectures?  Explain. 

 

VIII.  A Breakthrough 
 

40.  Complete the following quintic partition into a sum of four terms of the quintic 144
5
 

using the computations below: 

m
5
 + 84

5
 + 110

5
 + 133

5
 = 144

5
 

 where  

144
5
 = 61,917,364,224 

133
5
 = 41,615,795,893 

84
5
 = 4,182,119,424. 

 

 The result in investigation 40) was discovered by L.J. Lander (??) and T.R. Parkin (??) 

in 1966.
48

 

 

41.  How do you think Lander and Parkin discovered the result illustrated in investigation 

40)? 

 

42.  What does the result in investigation 40) tell us about Fermat's Last Theorem?  What does 

it tell us about Euler's conjecture? 

 

 In 1988 Noam D. Elkies (1966 - )
49

 discovered that  

2682440
4
 + 15365639

4
 + 18796760

4
 = 20615673

4
. 

In announcing this result, Elkies also noted that Roger Frye (1940 - ) found the smallest such 

quartic partition of a quartic into a sum of three terms: 
                                                           
47

 See Ribet and Hayes referenced above. 
48

 "Counterexamples to Euler's conjecture on sums of like powers", L.J. Lander and T.R. Parkin, Bulletin of the 

American Mathematical Society, vol. 72, 1966, pp. 1079. 
49

 ”On A
4
 + B

4
 + C

4
 = D

4
", by N.D. Elkies, Mathematics of Computation, vol. 51, no. 184, October 1988, pp. 

825-835. 
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95800
4
 + 217519

4
 + 414560

4
 = 422481

4
. 

 

43. What do these results tell us about Fermat's Last Theorem?  What do they tell us about 

Euler's conjecture? 

 

44.  Why didn't I leave out one of the terms and have you (re-)discover Elkies' or Frye's 

results as I did in investigation 40) above? 

 

45.  How do you think Elkies and Frye discovered their results?  Explain. 

 

 In fact, Elkies and Frye relied on increasingly sophisticated mathematical 

developments in analytic number theory that had been building for some thirty years.  These 

developments include elliptic curves, modular forms, and Galois representations and are the 

result of the dedicated work of many contemporary mathematicians over many decades, 

including: Yutaka Taniyama (1927 – 58), Goro Shimura (1930 - ), Elkies, Frye, Robert 

Langlands (1936 - ), Gerd Faltings (1954 - ), Jean-Pierre Serre (1926 - ), John Coates 

(1945 - ), Peter Sarnak (1953 - ), Nicholas Katz (1943 - ), Karl Rubin (1956 - ), Barry 

Mazur (??), Ken Ribet (1948 - ), Richard Taylor (1962 - ), and lastly Andrew Wiles.  While 

progress was certainly being made, few held out hope that a proof of Fermat's Last Theorem 

was within reach. 

 

IX.  A Truly Remarkable Proof
50

 
 

 On 20 June, 1993 Andrew Wiles, a Professor of Mathematics at Princeton University, 

was scheduled to give three hour-long lectures over three consecutive days at an international 

mathematics conference at Cambridge University in Oxford, England.  Wiles was a noted 

mathematician who had increasingly withdrawn from research circles over the prior seven 

years, publishing only a few papers and risking the loss of important research funding.  

 Yet his first lecture sped his ascent back into the mathematical limelight.  He had, in 

virtual isolation, made groundbreaking contributions to analytic number theory.  Emails and 

phone calls circled the world - "Come to Cambridge to hear Wiles' lectures; something big is 

up."  The crowds grew the second day and packed the lecture hall the third day.  As his third 

lecture neared its conclusion, Wiles proceeded through the final few logical arguments that 

completed the proof of his major result - a result which had a remarkable consequence.  

Namely, among other things, his work established the truth of Fermat's Last Theorem.  Wiles 

completed his proof, wrote the statement of Fermat's Last Theorem onto the chalkboard, and 

then modestly turned to the astonished audience to modestly announce, "I think I'll stop here." 

 The amazing news was instantly circulated world-wide via email and phone messages.  

Wiles' picture and a lengthy story graced the front page of the next day's New York Times.  

                                                           
50

 The story briefly described here is captured powerfully in the Nova documentary The Proof [LySin], which is 

highly recommended, and the corresponding trade book Fermat’s Enigma:  The Epic Quest to Solve the World’s 

Greatest Mathematical Problem [SinLy]. 
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Stories appeared in Time, Newsweek, and print media throughout the world.  Wiles was 

named one of People Magazines "25 Most Interesting People." 

 But the perfect ending to the enigmatic theorem of Fermat was yet to unfold.  For like 

the fate that befell Lame and so many other mathematicians throughout its near 350-year 

history, Wiles 200-page proof succumbed to a logical defect as it was checked by experts.  

For months he struggled, finally breaking his silence with a 4 December, 1993 email to the 

mathematical community: 

In view of the speculation on the status of my work on the Taniyama-

Shimura conjecture and Fermat's Last Theorem I will give a brief account of 

the situation.  During the review process a number of problems emerged, 

most of which have been resolved, but one in particular that I have not 

settled.  The key reduction of (most cases of) the Taniyama-Shimura 

conjecture to the calculation of the Selmer group is correct.  However, the 

final calculation of a precise upper bound for the Selmer group in the 

semistable case (of the symmetric square representation associated to a 

modular form) is not yet complete as it stands.  I believe that I will be able to 

finish this in the near future using the ideas explained in my Cambridge 

lectures. 

But Wiles was unable to fill this gap. 

 Desperate and in the position of "doing mathematics in that kind of rather over-

exposed way [which] is certainly not my style and I have no wish to repeat," Wiles enlisted 

the help of his former student Richard Taylor. 

 On 3 April, 1994 another email stunned the world.  It announced that Noam Elkies had 

found a counter-example to Fermat's Last Theorem with exponent  

   n > 100,000,000,000,000,000,000! 

In other words, not only was Fermat wrong, but Wiles' gap must be fatal -- his proof was 

incorrect.  After a few days of turmoil, it became clear that the email was the result of an 

April Fools' Day joke from the Canadian mathematician Henri Darmon (1965 - ) which had 

gotten out of hand, spreading like a computer virus. 

 Wiles and Taylor made no progress through the summer.  But on Monday, 19 

September, 1994, the breakthrough came.  In Wiles' own words:   

I was trying to convince myself that it didn't work, just seeing exactly what 

the problem was. Suddenly, totally unexpectedly, I had this incredible 

revelation. I, I realized what was holding me up was exactly what would 

resolve the problem I'd had in my Iwasawa theory attempt three years earlier. 

It was the most, the most important moment of my working life. It was so 

indescribably beautiful, it was so simple and so elegant and I just stared in 

disbelief for twenty minutes. Then during the day I walked round the 

department, I'd keep coming back to my desk and looking to see if it was still 

there. It was still there... My original approach to the problem from three 
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years before would make it exactly work. So out of the ashes seemed to rise 

the true answer to the problem. So the first night I went back and slept on it, I 

checked through it again the next morning and by 11 o'clock I was satisfied. I 

went down and told my wife, "I've got it, I think I've got it, I've found it." It 

was so unexpected, she, I think she thought I was talking about a children's 

toy or something, said, "Got what?" And I said, "I've fixed my proof, I, I've 

got it."
51

 

 On 25 October, 1994 the world was treated to the final email in history's chapter of 

Fermat's Last Theorem.  It noted, 

   As of this morning, two manuscripts have been released: 

 Modular elliptic curves and Fermat's Last Theorem,  

    by Andrew Wiles 

 Ring theoretic properties of certain Hecke algebras,  

    by Richard Taylor and Andrew Wiles. 

The first one (long) announces a proof of, among other things, Fermat's Last 

Theorem, relying on the second one (short) for one crucial step. 

   ...While it is wise to be cautious for a little while longer, there is certainly 

reason for optimism. 

In fact, these two articles make up an entire issue (vol. 142, 1995) of the prestigious Annals of 

Mathematics, the first article on pages 443-551 and the second on pages 553-72.   

  

X.  Perspectives on These Historic Accomplishments 
 

46.  The title of this lesson is "The world's greatest mathematics problem."  Which problem 

do you think this refers to: The Pythagorean theorem, Pythagorean triples, partitions, 

Euler's conjecture, or Fermat's Last Theorem?  Explain. 

 

47.  Suppose I had asked you to write a brief essay on the working life of a mathematician 

when you first began this course and to rewrite it having worked through this book, 

watched the video “The Proof”, and completed the other mathematical investigations from 

this course.  How might your essays have compared?  In other words, are there important 

ways that your views have been reinforced or have been changed? 

 

48.  As a current student of mathematics, a prospective parent, and a citizen of the 

technology-driven twenty-first century, are there lessons that you can take and use from 

the story of Fermat's Last Theorem?   

 

49.  Wiles spent eight years working in virtual isolation on Fermat's Last Theorem.  What do 

you think about his efforts?  Do his efforts compare with the efforts of professionals in 

other areas?  Explain how they do or why they do not. 

 

                                                           
51

 [LySin]. 
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Additional Investigations 
 

(??Development ongoing??) 

 

 What follows is a collection of additional investigations.  They are topics that are 

adjacent to the path pursued in the body of this text, they simply were not included there 

either for the sake of judiciousness or due to the fact that some are a bit more sophisticated.   

These additional investigations can be used for many purposes:  to supplement the 

investigations in the body of the text, for assigned homework, for quizzes or exams, and/or for 

further investigation.   

 To avoid confusion, the numbering has been changed in this section.  Subsection 

headings use Arabic numerals and questions are listed with lower case Roman numerals.  The 

investigations appear in an order that is compatible with the topics in the text. 

 

1.  Goldbach’s Conjecture 
 

i.  Make a table and show that Goldbach’s conjecture is valid for each of the even numbers 30 

– 50. 

 

ii.  Make a table and show that Goldbach’s conjecture is valid for each of the odd numbers 31 

– 51. 

 

iii.  Does Goldbach’s conjecture hold for each of the even numbers 100, 102, 104, and 106? 

 

iv.  Does Goldbach’s conjecture hold for each of the even numbers 101, 103, 105, and 107? 

 

v.  If we are searching for prime numbers, is our task easier when we look among larger or 

smaller numbers?  Explain in detail. 

 

vi.  What are the implications of your answer to v) to Goldbach’s conjecture? 

 

??Give references.  Thing about Vinogradov’s result. 

 

2.  Alan Turing 
 

 Alan Turing was one the twentieth century’s more important mathematicians, making 

fundamental contributions to the development of modern computer science.  Additionally, he 

played a critical role in the intelligence efforts during the Second World War.  In fact, his 

efforts prompted the mathematician Peter Hilton to remark: 



 92 

I.J. Good, a wartime colleague and friend, has aptly remarked that it is 

forunate that the authorities did not know during the war that [Alan] Turing 

was a homosexual; otherwise, the Allies might have lost the war.
52

 

Indeed, when his homosexuality was discovered after the war he was subjected to house arrest 

and a variety of medical “treatments.”  Soon afterward this highly decorated war hero 

committed suicide. 

 Find out more about the life and mathematical accomplishments of Alan Turing.  

Write a brief, two- to three-page biographical essay, addressed to fellow students, that 

describes your findings.  

 

3.  The Navajo Code Talkers 
 

 In addition to Alan Turing and other British mathematicians at Bletchley Park that 

broke the German Enigma codes, Allied intelligence agents were somewhat successful at 

breaking Japanese secret codes.  The outcome at the Battle of Midway, one of the changing 

points in the war, was dramatically impacted by U.S. intelligence success in codebreaking.  In 

contrast, the Axis forces had much less success at deciphering Allied codes.  One reason was 

that U.S. forces encrypted some of their most important messages first by having Navajos 

translate the messages into Navajo before they were then encrypted using mathematical 

algorithms.  Congressional Gold Medals were recently awarded to the 29 Code Talkers that 

developed the code.   

 The story of the Navajo Code Talkers serves as the basis for the major motion picture 

Windtalkers (MGM, 2002).  Find out more about the Navajo Code Talkers and their role in 

U.S. intelligence efforts in the Second World War.
53

  Write a brief, two- to three-page 

biographical essay, addressed to fellow students, that describes your findings.  

 

4.  Secret Codes 
 

 A rudimentary introduction to the breaking of secret messages, using guided discovery 

investigations as is done in this text, is given in “The breaking of ciphers and codes:  An 

application of statistics,” Chapter 9, Lesson 2 of Mathematics a Human Endeavor by Harold 

Jacobs (W.H. Freeman, 1994).  Complete this lesson.   

 

5.  A “Forumla” for the Partition Function 
 

In the Section III of the Investigations for Chapter 4 it is noted that in 1934 Hans 

Rademacher discovered an exact formula for the values of the partition function.  This 

                                                           
52

 From “Cryptanalysis in World War II -- and Mathematics Education," Mathematics Teacher, Oct. 1984, by 

Peter Hilton.  
53

 See, e.g., Navajo Weapon:  The Navajo Code Talkers by Sally McClain, Rio Nuevo Publishers, 2002; 

Warriors:  Navajo Code Talkers by Kenji Kawano, Kanji Kawano, and Carl Gorman, Northland Publishers, 

1990; The Navajo Code Talkers by Doris A. Paul, Dorrance Publishing, 1998.  
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formula is an exact version of the asymptotic formula discovered by Hardy and Ramanujan in 

1918 which is given by:    

34
)(

3

2

n

e
np

n

. 

 

i.  Use a graphing calculator, computer algebra system, or spreadsheet to complete the 

following table (using the values of p(n) from Chapter 4):  

   n  p(n)  
34

3

2

n

e

n

 

   1    1       

   2    2   

   3    3 

   4    5     

                 
             45          89,134   

 

ii)  How do the values for p(n) and the Hardy/Ramanujan function appear to be on your table?  

Does this give you confidence that this result is correct?   

 

iii)  Use the Hardy/Ramanujan function to approximate p(100), p(1000), p(10000), and 

p(1000000).  How useful is the Hardy/Ramanujan function in obtaining approximate 

values for these numbers?   

 

iv)  What do you think about the form of the Hardy/Ramanujan function?  Do you have an 

idea how somebody might arrive at such a formula?  Do you have an idea how they might 

prove that in fact gets closer and closer, asymptotically, to the correct value of the 

partition function as n gets larger and larger?  

 

6.  A “Generating Function” for the Partition Function 
 

Well before Rademacher’s formula Euler discovered a generating function for the 

partition function.  In other words, Euler discovered a way to generate the number of 

partitions one after another, at least theoretically.   

Euler’s result is  

1

5432

1

1
...)5()4()3()2()1(1

n
nx

xpxpxpxpxp . 

If we can make sense of the thing on the right, an infinite product, then we can simply read off 

the values of the partition function; p(3) is the coefficient of x
3
, etc.   
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 So what is this quantity on the right?  It is a shorthand for  


5432 1

1

1

1

1

1

1

1

1

1

xxxxx
 

which turns out, remarkably, to be the same as 

 129638642432 111 xxxxxxxxxxxx  

   2015105161284 11 xxxxxxxx  

This looks like FOIL from hell, infinite multiplication of infinite series!  But it helps that there 

are 1’s in each of these infinite series.  If you multiply the 1 from each of these, you get 1.  

This is the 1 that is the first term in Euler’s result.  Now what?  Well, there is only one x term 

– in the first infinite series.  So take this x term and multiply it by the 1 from each of the other 

infinite series.  You get exactly one x.  And, p(1)=1.  So the x–term in Euler’s infinite product 

is just p(1)x, as he claimed.   

 

i.  Mimicking the approach above, find all x
2
 terms that would arise from the infinite 

expansion of the infinite products above.  Show that your result is p(2)x
2
. 

 

ii.  Mimicking the approach above, find all x
3
 terms that would arise from the infinite 

expansion of the infinite products above.  Show that your result is p(3)x
3
. 

 

iii.  Mimicking the approach above, find all x
4
 terms that would arise from the infinite 

expansion of the infinite products above.  Show that your result is p(4)x
4
. 

 

iv.  Do you begin to see why Euler’s result might be true? 

 

v.  How useful is Euler’s result in actually calculating values of the partition function?  In 

other words, would Euler’s result help you determine p(20), p(45), or any of the values in 

Investigation iii) of Section 5 above?  Explain. 

 

 In fact, modern computer algebra systems can help you to use Euler’s result to 

determine values of the partition function until the size of the numbers begin to strain 

computer limits. 

 

7.  Euler’s Formula for Waring Numbers 
 

As noted, mathematicians believe they have a formula for the Waring numbers.  The 

formula, which is in fact due to Euler, is given by 

Wn ≈ 2
n
 + Int((3/2)

 n
) – 2 
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where Int means we take only the integer part of the fraction enclosed in parentheses and the 

approximation symbol ≈ is used as the validity of this expression has not been completely 

established.  As an example,  

W4 ≈ 2
4
 + Int((3/2)

 4
) – 2 = 16 + Int(81/16) – 2 = 16 + Int(5 1/16) – 2 = 16 + 5 – 2 =19, 

as expected.   

Euler only proposed the expression in question as an upper bound for the Wn.  He 

certainly did not have enough evidence to connect it to all the Wn.  It was 1912 before the 

value of W3 was definitively established to be the value predicted by Euler's expression.  This 

is 142 years after Lagrange established the value of W2, slow progress indeed!!  In 1936 

Eugene Dickson and S. Pillai independently proved that Euler's expression does in fact give 

the correct value of Wn provided that  

a)  n > 6, and 

b)  the numerical inequality Frac((3/2)
n
) ≤ 1 – (3/4)

 n
 holds. 

(Frac means that we take only the fractional part of the fraction enclosed in parenthesis.)  In 

other words, determining each value of Wn has been reduced to showing that a simple 

numerical inequality holds! 

 

i.  Use Euler’s formula to make a conjecture about the value of W5. 

 

ii.  Determine whether the inequality above holds for n = 5 and explain what this tells you 

about the validity of your conjecture in i). 

 

iii.  Use Euler’s formula to make a conjecture about the value of W10. 

 

iv.  Determine whether the inequality above holds for n = 10 and explain what this tells you 

about the validity of your conjecture in i. 

 

v.  Computers have checked that the inequality above holds for values of n at least up to 

471,600,000.  Suppose that you wanted to be the first person to definitively establish the 

correct value of one of the Waring numbers.  How could you do this?  Explain. 

 

vi.  How technically complicated would it be to succeed in your efforts in v)?  Explain. 

 

vii.  Does it seem reasonable that the inequality Frac((3/2)
n
) ≤ 1 – (3/4)

 n
 is centrally related to 

Waring’s problem?  Explain in detail. 

 

viii.  Is it strange that it is the cases of the smaller exponents n = 3, 4, 5, and 6 that do not 

conform to Euler's inequality while the larger exponents all do?  Explain. 
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 The correct values of W4, W5, and W6 were established in 1986, 1964, and 1940 

respectively.  While this might seem a strange way for mathematical developments to 

proceed, it is not unheard of.  One of the most famous outstanding problems in mathematics, 

and in fact another of the $1 Million Millenium Prize Problems that were mentioned in the 

Introduction, is the Poincare Conjecture.  A conjecture from topology, a type of geometry 

where continuous distortions are allowed
54

, the Poincare conjecture says that in each of the 

dimensions the only surfaces that behave like spheres are spheres.  This result was established 

in 1960 by Stephen Smale (??) for dimensions n  5.  It has since been established for 

dimension four as well.  Despite intense work by mathematicians and the lure of a $1 Million 

prize, the only dimension where this conjecture remains unestablished is n = 3 -- precisely the 

dimension in which we live.    

 

8.  Banach-Tarski Theorem and Other Paradoxes of the Infinite 
 

 ?? Get stuff from Phil and do some of the other stuff on the infinite.  Get Internet 

sites.  Do 0.9999999 stuff.  See what can be lifted from the infinite text.  Start of with some of 

the cool quotes. 

"The Banach Tarski Theorem" by Robert M. French, Mathematical Intelligencer, vol. 10, no. 

4, Fall 1988, pp. 21-8.  

 

9.  Infinitude of the Primes 
 

 In this section we would like to investigate the number of prime numbers.  This 

investigation is adapted from an approach that is due to the ancient Greeks and is included as 

a theorem in Euclid's Elements.  This approach, which establishes a definitive result, is among 

the most famous proofs in all of mathematics. 

 

 i)  Complete each of the following computations and determine if the resulting number is 

prime or not: 

12  
132  

1532  

17532  

1117532  

 

ii)  Do you think that the pattern in i) will continue indefinitely?  If it does, what type of 

reasoning are you using and what may you conclude about the number of primes? 

  

iii)  Complete the calculation  

113117532  

and then determine if the resulting number is prime.  If it is not prime, completely factor the 

number into prime factors. 

 

iv)  Repeat iii) for 11713117532 . 

                                                           
54

 See e.g. [Jac, Ch. 10] for a guided discovery investigation of topology. 
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v)  You should notice that the prime factors are all larger than the primes used in forming the 

numbers in iii) and iv).  Prove that if you form the number 1532 nn pN  , where 2, 3, 

5, ..., pn are consecutive prime numbers, that none of these primes divide Nn.
55

 

 

vi)  Explain how v) enables you to prove the following: 

 

Theorem  Let 1532 nn pN   be the product formed from the product 

of the consecutive primes 2, 3, 5, ..., pn.  Then either: 

 a)  Nn is prime, or, 

 b)  Nn is divisible by some prime larger than pn. 

 

vii)  Suppose that there were only finitely many primes.  Then there would have to be a 

largest prime.  Denote this largest prime by pLargest.  Use the result in vi) can be used to arrive 

at a contradiction - a state of affairs that is logically impossible. 

 

viii)  Explain how vii) enables you to conclude that there must be infinitely many primes. 

 

xi)  Does it seems strange to you that you were able to prove that there were infinitely many 

primes without providing a way of explicitly generating prime numbers indefinitely?  

Explain. 

 

10.  Distribution of the Primes 

 

 One of the opening quotes of Topic 3 was by the enigmatic Paul Erdos
56

 who said "It 

will be another million years, at least, before we understand the primes."  One way of 

understanding the primes would be able to explain precisely how they are distributed among 

the natural numbers.  In 1896 Jacque Salamon Hadamard (1865-1963) and Charles Jean 

Gustave Nicolas Baron de la Vallee Poussin (1866-1962) independently proved the 

celebrated Prime Number Theorem.  This theorem says that as you go farther and farther 

out in the number line the number of primes in the first n numbers is approximately equal to 

the quantity 
n

n

elog
.  While this completely explains how the primes are distributed in average 

                                                           
55

 You should be careful with you use of calculators at this point.  For example, Texas Instruments graphing 

calculators like the TI-82, TI-83, and TI-83 Plus will tell you that the number 

646969323112923191713117532  is divisible by 3 which it certainly isn't.  Reflecting 

on why this may happen is interesting. 
56

 Erdos was one of the most cherished mathematician of this century.  He was an eccentric vagabond who never 

having a permanent residence but simply traveled from mathematical conference to mathematical conference.  

He was fond of saying "A mathematician is a machine for turning coffee into theorems."  He called little children 

"epsilons" after the Greek letter that mathematicians often use to denote small numbers.  His work was so 

prolific that mathematicians are awarded Erdos numbers which measure their degree of separation from Erdos in 

terms of publications.  This author is proud to have an Erdos number of 3.  For more information on Erdos and 

Erdos numbers see the book My Brain is Open:  The Mathematical Journeys of Paul Erdos by Bruce Schechter, 

Touchstone Books, 2000 and online Erdos Number Project site www.acs.oakland.edu/~grossman/erdoshp.html. 
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as we approach infinity, their behavior over any finite stretch is high volatile and poorly 

understood.  The investigations below consider some of the strange behavior in the 

distribution of the primes. 

i)  In Topic 3 twin primes were introduced.  Find a dozen examples of twin primes, one with 

numbers which are greater than 200. 

ii)  As the numbers increase in size, do you think it will be harder easier to find primes?  What 

about twin primes? 

 The Twin Prime Conjecture is a conjecture which suggests that the number of twin 

primes is infinite.  Mathematicians have believed this conjecture for centuries, but have made 

virtually no progress in proving it.  However, there seems to be significant progress made in 

the past year.
57

 

 Consider the following numbers:   

210765432 6 , 

310765432 6 , 

410765432 6 , 

510765432 6 , 

  
66 1010765432  . 

iii)  Show that the numbers in this sequence are consecutive numbers.  How many numbers 

are there in this sequence? 

iv)  Show that each of the numbers in this sequence in composite.   

v)  How do your answers in iii) and iv) contrast with the twin prime conjecture?  What does 

this contrast tell you about the distribution of the prime numbers? 

                                                           
57

 On 21 March, 2003 the American Institute for Mathematics issued a press release which stated that the work 

of Dan Goldston and "Cem Yildirim, places mathematicians closer to the tantalizing goal of identifying the 

frequency and location of 'twin primes'." 
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Appendix 
 

 

 

   
 

 

  
 

Fig 1.2 Spirals in a Pinecone and a Sunflower  
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Fig. 1.7  Norway Spruce primordia development  
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